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14 Abstract

15 The need for accurate, real-time, reliable, and multi-scale soil water content (SWC)

16  monitoring is critical for a multitude of scientific disciplines trying to understand and predict the
17  earth’s terrestrial energy, water, and nutrient cycles. One promising technique to help meet this
18  demand is fixed and roving cosmic-ray neutron probes (CRNP). However, the relationship

19  between observed low-energy neutrons and SWC is affected by local soil and vegetation

20  calibration parameters. This effect may be accounted for by a calibration equation based on local
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21  soil type and the amount of standing biomass. However, determining the calibration parameters
22 for this equation is labor and time intensive, thus limiting the full potential of the roving CRNP
23 in large surveys and long transects, or its use in novel environments. In this work, our objective
24 s to develop and test the accuracy of using globally available datasets (clay weight percent, soil
25  bulk density, and soil organic carbon) to support the operability of the CRNP. Here, we develop
26 a1l km product of soil lattice water over the CONtinental United States (CONUS) using a

27  database of in-situ calibration samples and globally available soil taxonomy and soil texture data.
28  We then test the accuracy of the global dataset in the CONUS using comparisons from 61 in-situ
29 samples of clay percent (RMSE = 5.45 wt. %, R* = 0.68), soil bulk density (RMSE = 0.173

30 g/cm3, R’*= 0.203), and soil organic carbon (RMSE = 1.47 wt. %, R*=0. 175). Next, we conduct
31  an uncertainty analysis of the global soil calibration parameters using a Monte Carlo error

32 propagation analysis (maximum RSME ~0.035 cm®/cm’ at a SWC = 0.40 cm*/cm’). In terms of
33  vegetation, fast growing crops (i.e. maize and soybeans) contribute to the CRNP signal primarily
34  through the water within their biomass and this signal must be minimized for accurate estimation
35 of SWC. We estimated the biomass water signal by using a vegetation index derived from

36 MODIS imagery as a proxy for standing wet biomass (RMSE < 1 kg/m?). Lastly, we make

37 recommendations on the design and validation of future roving CRNP experiments.
38
39 1. Introduction

40 By the year 2050, over nine billion people are predicted to inhabit the Earth (United
41 Nations, 2015). The monumental task of feeding the projected global population will require a
42 near doubling of grain production (FAO, 2009). As of today, the majority (~2/3) of water

43 consumption by humans is used for agriculture, where approximately half of all global food
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44  production comes from irrigated agriculture (Mekonnen et al., 2011). As such, an increase in
45  food demand will put an even greater demand on fresh water resources, particularly an

46  increasing reliance on groundwater (Mekonnen et al., 2011). The ability to model and forecast
47  the hydrologic cycle will continue to play a major role in effective water resource management
48  in the coming decades. Currently, most land surface models (LSM) aimed at characterizing the
49  fluxes of water, energy, and nutrients, have relied on either sparse point scale SWC monitoring
50 networks (Crow et al. 2012) or remote sensing products with large pixel sizes (~36 km) and

51  shallow penetration depths (e.g., ~ 2-5 cm for SMOS; Kerr et al., 2010 and SMAP Entekhabi et
52 al, 2010). A critical scale gap exists between these methods requiring innovative monitoring
53  strategies (Robinson et al., 2008). Moreover, as LSMs continue to move towards highly refined
54  spatial resolutions of 1 km or less (Wood et al., 2011), the need for accurate and spatially

55  exhaustive SWC datasets continues to grow (Beven and Cloke, 2012).

56 Estimating and monitoring SWC at the appropriate spatial and temporal scale for effective
57  incorporation into LSMs has proven to be a difficult task. On one hand, monitoring networks at
58 the regional (e.g., Nebraska Automated Weather Data Network; AWDN, Oklahoma Mesonet)

59  and continental scales (Climate Reference Network; CRN, Soil Climate Analysis Network;

60 SCAN) have continuously recording point sensors. However, these networks have limited spatial
61  coherence due to the nature of point based SWC sensors only representing the point at which they
62 are placed, and not the surrounding landscape (Vereecken et al., 2008). Techniques such as

63  temporal stability analysis (Vachaud et al., 1985) can help improve the representativeness of the
64  monitoring networks but require a priori spatial information. On the other hand, remote sensing
65  satellites using passive microwaves can monitor global SWC data every few days albeit with

66  large spatial footprints (~36 km, Entekhabi et al., 2010; Kerr et al., 2010). In addition, passive
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67  microwaves lack significant penetration depths (~ 2-5 cm Njoku et al., 1996), limiting their

68  effectiveness as a remote sensing input for full root zone coverage in LSMs.

69 Alternatively, the field of geophysics offers a variety of techniques to help fill the spatial
70  and temporal gaps between point sensors and remote sensing products (Robinson et al., 2008).
71 Bridging this gap requires both novel geophysical techniques and integrated modeling strategies
72 capable of merging both point and remotely sensed data into a unified framework (Binley et al.,
73 2015). One promising geophysical technique to help fill this need is fixed (Desilets et al., 2010,
74 Zreda et al., 2012) and roving cosmic-ray neutron probes (CRNP; Chrisman et al., 2013, Dong et
75  al., 2014), which measures the ambient amount of low-energy neutrons in the air. The low-

76  energy neutrons are highly sensitive to the mass of hydrogen, and thus SWC, in the near surface
77  (Zreda et al., 2012). CRNP estimate the area-average SWC because neutrons are well mixed

78  within the footprint of the sensor which typically has a radius of ~300 m and depths of ~12-76

79  cm (Desilets and Zreda 2013, Kohli et al., 2015).

80 To date, the CRNP method has been mostly used as a fixed system in one location to

81  continuously measure SWC as part of a large monitoring network (Zreda et al., 2012, Hawdon et
82 al., 2014). Recent advancements have allowed the CRNP to be used in mobile systems to

83  monitor transects across Hawaii (Desilets et al., 2010), monitor entire basins in southern Arizona
84  (Chrisman et al., 2013), compare against remote sensing products in central Oklahoma (Dong et

85 al.,, 2014), and monitor ~140 agricultural fields in eastern Nebraska (Franz et al., 2015). In order

86  to accurately estimate SWC, the CRNP method relies on a calibration function to convert

87  observed low-energy neutron counts into SWC (Desilets et al., 2010, Bogena et al., 2013, see

88  Sec. 2.2 for full details). The calibration procedure requires site specific sampling of both soil

89  and vegetation data in order to determine the required parameters. While the calibration of a
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90 fixed CRNP is fairly standardized (Zreda et al., 2012; Franz et al., 2012; Iwema et al., 2015,

91 Baatz et al., 2015), the heterogeneous nature of soil and vegetation characteristics across a

92  landscape makes the pragmatic calibration of the mobile CRNP a significant challenge.

93  Specifically, the presence of water within vegetation and the soil minerals may alter the shape of
94 the local calibration function and thus accuracy of SWC. The need for reliable, accurate, depth-
95 dependent, and localized soil and vegetation spatial information for use in the calibration

96  function is critical in order to fully harness the potential of the CRNP to monitor landscape scale

97  SWC across the globe.

98 The objective of this study is to explore the utility and accuracy of currently available
99 global soil and vegetation datasets (soil organic carbon, soil bulk density, soil clay weight
100  percent, and crop biomass) for use in the calibration function. To accomplish our objective, we

101  aimed to answer the following questions:

102 1) Can global datasets of soil bulk density, soil organic carbon, and soil clay weight percent be
103 used to in lieu of in-situ sampling within reasonable error for use in the CRNP calibration

104  function?

105  2) Can the use of remotely sensed vegetation products, specifically the Green Wide Dynamic
106  Range Vegetation Index (GrWDRVI) be used to quantify fresh biomass with reasonably low

107 error (< 1 kg/m?) for use in the CRNP calibration function?

108  To answer these questions, we tested the accuracy of these datasets against in-situ sample
109  datasets of the same parameters. Existing in-situ datasets from across the CONUS were then
110  combined with in-situ datasets from eastern Nebraska, which focused on fast growing crops of

111  maize and soybean. Specifically, we tested the accuracy and use of a ~1 km global soil dataset
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(Shangguan et al., 2014). In addition, we examined the use of the Green Wide Dynamic Range
Vegetation Index (GrWDRVI, Gitelson, 2004) derived from NASA’s MODIS sensor aboard the

Terra satellite for use in estimating the amount of fresh crop biomass.

The remainder of the paper is organized as follows: In the Methods section, the CRNP
method is first presented, with emphasis on the integration of the calibration function and soil
and vegetation parameters to convert observed low-energy neutron counts into SWC. Next, in-
situ methods for estimating the soil and vegetation calibration parameters are discussed, which is
followed by discussions on the soil and vegetation products available globally at ~1 km
resolution. In the Results section, we first compare the in-situ soil sampling against the global
datasets. Next, we develop a 1 km CONUS soil lattice water map using in-situ samples. We then
compare the GrWDRVI against in-situ samples from Nebraska to estimate the changes in maize
and soybean fresh biomass. Lastly, we present an error propagation analysis investigating the
potential uncertainty of using the global soil calibration data vs. local in-situ sampling. The paper
concludes with a discussion on best practice recommendations for calibrating and validating a

roving CRNP experiment.

2. Methods

2.1 Overview of Cosmic-ray Neutron Probe

The CRNP estimates area-averaged SWC via measuring the intensity of epithermal
neutrons near the ground surface (Zreda et al. 2008, 2012). A cascade of neutrons with varying
energy levels are created in the earth’s atmosphere when incoming higher energy particles

produced within supernovae interact with atmospheric nuclei (Zreda et al., 2012 and Kohli et al.,
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134 2015). After fast neutrons are created, they continue to lose energy during numerous collisions
135  with nuclei in air and soil, and become epithermal neutrons (i.e., the neutrons which are

136  primarily measured by the moderated detector). The abundance of hydrogen atoms in the air and
137  soil largely controls the removal rate of epithermal neutrons from the system (Zreda et al. 2012).
138  Water in the near surface soil (i.e. SWC) is one of the largest sources of hydrogen present in

139 terrestrial systems (McJannet et al. 2014). Thus, relative changes in the intensity of epithermal
140  neutrons are overwhelmingly due to changes in the SIWC. However, the shape of the calibration
141 function (see section 2.2) is modified by local soil and vegetation parameters (Zreda et al. 2012)

142 reflecting the variation of background hydrogen levels across landscapes.

143 Using a standard neutron detector with a 2.54 cm layer of plastic, Zreda et al. (2008) first
144  described the support volume the detector measures to be a circle of ~300 m in radius with

145  vertical penetration depths of 12 to 76 cm depending on SWC. Recent neutron transport

146 modeling has further refined the footprint area to be a function of atmospheric water vapor,

147  elevation (Desilets and Zreda, 2013), surface heterogeneity (Kohli et al., 2015), vegetation, and
148  SWC. Given the large measurement footprint area at tens of hectares, this non-invasive

149  technique is an ideal complement to long-term surface energy balance monitoring around the
150  globe. Currently, there are >200 fixed CRNP (personal communication with Darin Desilets of
151  Hydrolnnova LLC, Albuquerque, NM) functioning in this capacity around the United States of
152 America (Zreda et al., 2012), Australia (Hawdon et al., 2014), Germany (Baatz et al., 2015),
153  South Africa, China, and the United Kingdom. The real-time SWC data provide critical

154  infrastructure for use in weather forecasting and data assimilation in LSMs (Shuttleworth et al.,

155 2013, Rosolem et al., 2014, Renzullo et al., 2014).
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In addition to the fixed CRNP measuring hourly SWC, a roving version of the CRNP has
been used to reliably measure SWC at temporal resolutions as low as 1 minute (Chrisman et al.,
2013; Dong et al., 2014) providing the ability to make SWC maps over hundreds of square
kilometers in a single day. Moreover, Franz et al. (2015) found that a combination of fixed and
roving CRNP data in a statistical framework has the ability to form an accurate, real-time, and
multiscale monitoring network. With the continued increase in observation spatial scales, the use
of in-situ sampling in the traditional CRNP calibration procedure is no longer practical, thus
requiring the use of alternative available datasets to improve its operability. The remainder of
this work will first describe the availability of such global datasets and then test the accuracy of

using the datasets in the CNRP calibration function.

2.2 The Cosmic-ray Neutron Probe Calibration Function

In order to convert observed epithermal neutron measurements into SWC, a series of
correction factors and calibration functions have been developed. Zreda (2012) describes in
detail the correction factors needed for geomagnetic latitude, changes in incoming high-energy
cosmic-ray intensity, and atmospheric pressure. Rosolem et al. (2013) further describes a
correction factor for changes in absolute air humidity near the surface. Following these four
correction factors, the corrected epithermal neutron counts can be converted into SWC. Desilets
et al. (2010) proposed the original calibration function (Eq. 1) valid for mass based gravimetric
measurements which Bogena et al. (2013) further expanded for volumetric water content. The
calibration function has been successfully tested against direct sampling and point sensor
measurements with RMSE < 0.03 cm’/cm’ across the globe including arid shrublands in

Arizona, USA (Franz et al., 2012), semi-arid forests in Utah, USA (Lv et al., 2014), to humid
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179  forests in Germany (Bogena et al., 2013), and across ecosystems in Australia (Hawdon et al.,

180  2014). The original calibration function proposed by Desilets et al., (2010) is:

181  Op = <Na_°a - a2> (1)

No 1t

182 where 61 (g/g) is the total gravimetric water content, a, = 0.0808, a;= 0.3720, a, = 0.1150 (see
183  Desilets et al., (2010) for details), N(counts per time interval) is the aforementioned epithermal
184  corrected neutron count rate, and N, (counts per time interval) is the theoretical counting rate at a

185  location with dry silica soils. Zreda et al. (2012) illustrated that:
186 BT = Hp + HLW + GSOC (2)

187  where 6, (g/g) is the gravimetric pore water content in the soil, 8, (g/g) is the soil lattice water,
188  and By (g/g) is the soil organic carbon water equivalent. The volumetric soil water content,

189  SWC, (cm3/cm3) is found by multiplying 6, by Z—:,, where p,, (g/cm3) is dry soil bulk density and
190  p,, = 1 g/em’ is the density of water.

191 To account for effects of time varying above-ground vegetation on the epithermal neutron

192 counts (Franz et al., 2013; Coopersmith et al., 2014), Franz et al. (2015) proposed the following

193  additional correction factor to Ny:
194 N (BWE) = m * BWE + Ny(0) 3)

195  where Ny(0) is the instrument specific estimate of N with no standing biomass, BWE is the
196  biomass water equivalent (kg/m” ~ mm of water/m?), and m is the slope of the relationship
197  between N, and BWE, determined via in-situ calibration datasets. The BWE is further defined

198 as:
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199 BWE = SWB — SDB + SDB * fyz (4)

200 where SWB is the standing wet biomass per unit area (kg/m” ~ mm of water/m”), SDB is the

201 standing dry biomass per unit area (kg/m” ~ mm of water/m?), and f,,z = 0.494 is the

202  stoichiometric ratio of H,O to organic carbon (assuming organic carbon is cellulose, C¢H10Os5).
203  Using nine in-situ calibration datasets for maize and soybean crops, Franz et al. (2015) found
204  their roving CRNP had a statistically significant linear relationship between N, and BWE

205  yielding Ny (0) = 518.34 counts per minute and m = —4.9506 (R* = 0.515 and p-value = 0.03).
206  We note the coefficients are less suitable for forest canopies given the need for a neutron

207  geometric efficiency factor described further in the supplemental material of Franz et al. (2013).
208  We also refer the reader to Coopersmith et al. (2014) and Baatz et al. (2015) for further

209  discussion of CRNP use in forest canopies.
210
211 2.3 In-situ Soil and Vegetation Calibration Parameters

212 The calibration function summarized in equations (1-4) requires depth-average estimates
213 of three soil parameters, 0;y,, O5oc¢, and p,, and two vegetation parameters SWB and SDB. In
214  order to estimate area-average soil parameters, Zreda et al. (2012) and Franz et al. (2012)

215  recommended averaging 108 individual in-situ soil samples from 18 locations (every 60 degrees
216  and radii of 25, 75, 200 m) and six depths (every 5 cm from 0-30 cm) within a CRNP footprint.
217  In light of recent modeling work (Kohli et al. 2015), this sampling pattern may need to be

218  adjusted to be more representative of encountered conditions (such as shorter sampling distances
219 due to reduced footprint area). Zreda et al. (2012) found that a composite sample of 1 g of

220  material gathered from each of the 108 samples was adequate to estimate 6;, and 6g,. These
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composite samples can be analyzed directly for lattice water (g/g), soil total carbon (TC, g/g),
and inorganic carbon (TIC, g/g) determined by measuring CO; after the sample is acidified (e.g.
by Actlabs of Ontario Canada, Analysis Codes: 4E-exploration, 4F-CO2, 4F-C, and 4F-H20+/-).
Franz et al. (2015) reported 059 = (TC — TIC) * 1.724 * f;y, where 1.724 is a constant to
convert total organic carbon into total organic matter and f;,z is given above. To estimate p,;, at
each location, Zreda et al. (2012) used a 30 cm long split tube auger, which contained six 5 cm

diameter by 5 cm length rings. All samples were then averaged to get a composite value.

In order to estimate standing wet biomass (SWB) and standing dry biomass (SDB) in
maize and soybeans, Franz et al. (2015) measured average plant density in 1 m* quadrats at each
of the 18 sampling locations. In a subset of six sites (randomly chosen one radius for each of the
six transects) three plants were removed and placed in a paper bag for weighing within two hours
(to minimize water loss). The plants were then dried for five days at 70° C and weighed again.
Using the density of plants, wet weight, and dry weight, SWB and SDB can be determined at each

site and averaged across the CRNP footprint.

2.4 Global Datasets of Soil Properties

Shangguan et al. (2014) compiled a thirty arc second (~1 km) Global Soil DatasEt
(GSDE) with 34 soil parameters in 8 layers (0-0.045, 0.045-0.091, 0.091-0.166, 0.166—0.289,
0.289-0.493, 0.493-0.829, 0.829-1.383, and 1.383-2.296 m). In order to construct an average
value relevant to the CRNP, we arithmetically averaged the top four layers in each grid location
to form a composite value (~30 cm) over the CONUS. The GSDE contains estimates of soil bulk

density and soil organic carbon. In order to construct a map of lattice water, we explored if any
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relationships existed between clay weight fraction and lattice water following the work of
Greacen et al. (1981) using active neutron probe calibration procedures developed for Australian
soils. In order to account for variations in chemical and physical weathering on lattice water
(Zreda et al., 2012), we further partitioned the analyses based on soil order. A global soil order
map with a resolution of five arc minutes (~ 8 km) containing 25 major soil classifications was
first uploaded to ArcMap (ESRI, v. 10.2.2) and clipped to the CONUS. The 25 soil
classifications were then categorized into 12 major classifications of U.S. soil taxonomy (see Fig.
1, personal communication with Prof. M. Kuzila, University of Nebraska-Lincoln). The
reduction from 25 to 12 soil classifications allowed us to generate larger sample sizes for each
classification from the available calibration datasets. Using the available lattice water samples
from Zreda et al. (2012) and additional samples collected in-situ over 2014, we analyzed if any
statistically significant relationships existed between GSDE clay weight percent and 61 in-situ
lattice water samples for each of the US soil orders (Table S1). We note that this procedure could
be used globally if in-situ lattice water samples were available for all 25 soil taxonomic groups.
From these relationships, a map of the CONUS lattice water weight percent was developed by
using either the mean value of the in-situ lattice water or the linear relationships between clay
weight percent (from the GSDE) and the lattice water in-situ samples. Additionally, in-situ
samples of soil organic carbon, bulk density, clay weight percent, and lattice water were

compared against the same parameters derived from the GSDE.

2.5 Global Datasets of Vegetation Properties

In order to estimate SWB and SDB, we downloaded remotely sensed 500 m MODIS

reflectance data from NASA’s Terra satellite (http://earthexplorer.usgs.gov/). To calibrate and
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266  validate the in-sifu vegetation data to the remotely sensed vegetation estimates, we sampled two
267  different agricultural areas in eastern Nebraska. The MODIS reflectance data were used to

268  generate various vegetation indices (see detailed information below), and then calibrated against
269  historical biomass data (2003-2013) from 3 fields near Mead, NE. Each field is part of the

270  AmeriFlux network (http://ameriflux.ornl.gov/) with data going back to 2001 (site description
271  given in Suyker et al., 2005). Each field is approximately 65 ha. Field 1 (Mead Irrigated/US-
272 Nel, 41.1650°, -96.4766°) is irrigated with continuous maize. Field 2 (Mead Irrigated

273  Rotation/US-Ne2, 41.1649°, -96.4701°) is irrigated with a rotation of maize and soybean. Field 3
274  (Mead Rainfed/US-Ne3, 41.1797°, -96.4396°) is rainfed with a rotation of maize and soybean.
275 At these three fields, destructive biomass samples were collected approximately every two weeks
276  at 6 different locations in the field, typically consisting of 30-35 individual plants per sampling
277  bout. From the destructive sampling bouts, we were able to compute SWB and SDB. The sites,
278  with their long sampling records consisting of both rainfed and irrigated soybean and maize, are
279  anideal location for calibrating the remote sensing reflectance data and vegetation indices. In
280  order to validate the derived vegetation index and coefficients from the above mentioned three
281  sites, we used 4 bouts of destructive biomass sampling at two fields (each approx. 65 ha.) during
282 2014 near Waco, NE (Franz et al. 2015). The fields were irrigated maize (40.9482°, -97.4875°)
283  and irrigated soybean (40.9338°, -97.4587°). SWB and SDB were collected following the

284  protocol described in section 2.3.

285 A total of 924 MODIS images over the growing seasons (May to October) between 2003
286  and 2014 were downloaded for calibration and validation of the corresponding destructive
287  biomass samples at the five field sites in central and eastern Nebraska (note: MODIS images

288  from the closest date to in-situ sampling were used with up to a 4 day offset). Using the Python
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289  Integrated Development Environment (v. 2.7.8) built into ArcGIS (v. ESRI, v. 10.2.2), we

290  extracted the MODIS reflectance data in the green and near-infrared electromagnetic spectrum
291  range. Next, we removed any pixels that were skewed by incidental cloud cover (Nguy-

292  Robertson & Gitelson, 2015). The resulting data were then transformed from separate reflectance

293  images into the Green Wide Dynamic Range Vegetation Index (GrWDRVI; Gietelson, 2004):

(0.1xNear Infrared—Green)

294  GrWDRVI =

)

(0.1#Near Infrared+Green)

295  where near-infrared light (MODIS band 2) has wavelength between 841 and 876 nm and green
296  light (MODIS band 4) has wavelength between 545 and 565 nm. The GrWDRVI has been shown
297  to have better correlations with observed in-sifu biomass as compared to other vegetation indices
298  such as NDVI (Nguy-Robertson et al., 2012; Nguy-Robertson & Gitelson, 2015). We then

299  investigated if any relationships existed between GrWDRVI and SWB and SDB.

300

301 2.6 Error Propagation Analysis of GSDE Soil Properties

302 We used a Monte Carlo analysis to estimate the expected uncertainty if the GSDE

303  parameters were used instead of in-sifu estimates. The statistical metrics of root mean square

304  error (RMSE), mean absolute error (MAE), and bias were used to describe the error propagation
305 in the Monte Carlo simulation experiment. Using the 61 CONUS in-sifu samples and the GSDE
306  soil properties, we estimated the mean difference and the covariance matrix for 8;y,, 850, and
307  pp. Using these data, we simulated 100,000 realizations of the “true” (i.e. from the in-situ

308  sampling) and perturbed soil properties using a multivariate normal distribution. Using a range of
309  observed neutron counts and solving equations (1-2) with the true and perturbed soil properties,

310  we also estimated the true and perturbed SWC. In order to provide realistic constraints on the
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311  error propagation results, we assumed soil bulk density was constrained between 1.2-1.5 g/cm3,
312 lattice water between 1-8 wt. %, soil organic carbon between 0-8 wt. %, and SWC between 0.03-
313 0.45 cm’/cm’. Simulated and calculated values outside of these bounds were either reset to the
314  minimum or maximum value or removed from the Monte Carlo statistics. A minimum threshold
315  of 70% of simulated cases was used to compute all error statistics for each case. We note that the
316  effects of growing biomass were not included here given the lack of available calibration datasets

317  atall sites, but could be incorporated in future work following a similar methodology.
318

319 3. Results

320 3.1. Comparison of In-situ and Global Soil Calibration Parameters

321 The comparisons between observed clay weight percent, soil bulk density, soil organic
322 carbon and the GSDE values are summarized in Table S1 and Figure 2 a, b, ¢ for the 61

323 sampling sites within the CONUS. Other than 1 outlier (south central Texas, 29.9492°, -

324 97.9966°, which is located on the border between vertisols and alfisol soils), the comparison

325  between the mean observed and GSDE clay weight percent (of sites that had clay weight

326  percent) behaved well (RMSE = 5.45 wt. %, R?=0.68) considering the difference in scale and
327 methods. The comparisons between soil bulk density (RMSE = 0.173 g/cm3 , R*=0.203) and soil
328  organic carbon as it was during the various 2011-2014 sampling campaigns, (RMSE = 1.47 wt.

329 %, R*=0.175) generally followed the same positive trend.

330 In order to construct a map of the CONUS lattice water, we investigated if any significant
331 relationships existed between GSDE clay wt. % and observed lattice water for each US soil

332  taxonomic group (Table 1) following the relationships described from observations in Australian



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-92, 2016 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 2 March 2016 Sciences

(© Author(s) 2016. CC-BY 3.0 License.

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

Discussions

soils (Greacen, 1981). We found that a significant linear relationship existed between clay wt. %
and lattice water for all 61 sites (R* = 0.183, p value <0.001). However, after partitioning the
sites into soil taxonomic groups, only the mollisol taxonomic group yielded a statistically
significant relationship (R* = 0.539, p value <0.001). Therefore, in order to construct a CONUS
lattice water map, we used the mean values for six taxonomic groups and neglected the
remaining five taxonomic groups due to an inadequate number of samples (Figure 3). Figure 2d
illustrates the comparison between the derived and observed lattice water for the 61 CONUS
sites (RMSE = 1.299 wt. %, R* = 0.315). Table S1 summarizes the observed and GSDE values
for all 61 sites and Table 2 summarizes the mean difference and covariance matrix between the
in-situ values and GSDE values. The mean difference and covariance differences were used in
the error propagation analysis described in section 2.6 and 3.3. We note that each of the mean

differences followed a normal distribution (see Table S1 for in-situ and GSDE values).

3.2. Comparison of In-situ and Remotely Sensed Vegetation Calibration Parameters

Using the 11 years of destructive vegetation sampling from 3 fields near Mead, NE, we
found that the GrWDRVI was able to predict SWB when partitioning the data into maize and
soybean, irrigated and rainfed, and green-up/mature and senescence periods of crop development
(Figure 4 and Tables S2 and S3). Figure 3a and 3b illustrate the logistic functions that were used
to predict SWB for maize green-up (RMSE = 0.88 kg/mz) and soybean green-up (RMSE = 0.47
kg/m®). We note that SWB relationships with GrWDRVI indicate that GrWDRVI values less than
0.25 equated to the absence of SWB. During senescence, we found that a second order power law
function fit the data well. We found the maize senescence functions (DOY> 210) needed to be

further partitioned by irrigated and rainfed conditions as limitations in soil water will occur more
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quickly with mature plants that utilize the entire root zone. The resulting functions for irrigated
maize during senescence (RMSE = 0.75 kg/m?) and rainfed maize during senescence (RMSE =
0.92 kg/m”) behaved well. For the soybean senescence function (DOY>230), we found a single
function behaved reasonably well for both irrigated and rainfed conditions (RMSE = 0.45
kg/m?). As expected from previous research (Ciganda et al, 2008; Peng et al. 2011), we found
that the GrWDRVI was a poor predictor of SDB/percent water content of the vegetation. We will

discuss these reasons and alternative strategies for estimating SDB in section 4.2.

Using the derived relationships from the three study sites near Mead, NE, we applied the
equations to our two study sites near Waco, NE (~ 88 km from Mead, NE, Figure 5 and Tables 3
and 4). Figure 5 illustrates the time series of SWB using the 8 day MODIS product and derived
equations for both field sites. The figure also illustrates the observed destructive sampling for 4
different sampling bouts. With the limited data, we found the time series of SWB calculated from
the MODIS data followed the expected green-up and senescence SWB behavior for both the
irrigated maize and soybean. The GrWDRVI derived SWB largely captured the maximum
observed value for both the irrigated maize (6.58 kg/m? vs. 6.2 kg/m?) and irrigated soybean
(2.61 kg/m” vs. 1.81 kg/m?). The largest discrepancy was during the maize green-up period
(DOY 183) where the observed value was 2.4 kg/m” and ~4.0 kg/m’ calculated from the
GrWDRVI. While the derived equations behaved well for this limited validation dataset, the
equations should be tested at additional sites where other crop and soil types may influence the
function coefficients. Overall, the equations and regression fits resulting in RMSE < 1 kg/m” are
within the uncertainty of destructive biomass sampling in crops (Franz et al., 2013; 2015). By

having general SWB relationships (for eastern Nebraska) through time using the 8 day MODIS
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data, this could allow for reasonable biomass corrections to Ny with minimal effects (<0.01

cm’/cm’) on the overall estimation of SWC.

3.3. Error Propagation Analysis of GSDE Soil Properties

In order to further assess the accuracy of our datasets, we synthetically altered the
parameters via a Monte Carlo error analysis. This was done using the GSDE soil parameters
(Brws Bsoc»> and py,) as compared to using local sampling (Figure 6). The analysis revealed that
for the given bounds of 8y, O5oc, and p,, the maximum RSME was around 0.035 cm’/cm’ at a
SWC =0.40 cm’/cm’. The asymmetric shape of all the curves is expected given the nonlinear
calibration function in Eq. (4) and the bounded nature of soil moisture. We found that p, was by
far the most sensitive parameter, followed by 6;,, and then 8¢,.. We expect the influence of
vegetation changes to be small on the overall accuracy of SWC (<0.01 cm®/cm’®) given the low
RMSE described in section 3.2 (< 1 kg/m?, which is ~1 mm of water or 0.0033 ¢cm’/cm” for a soil
depth of 300 mm). We also note the critical factor in the error propagation analysis is the
assumed range of p;, given that it is directly multiplied by the gravimetric water content in the
calibration function. Therefore, future sampling efforts or evaluations of available datasets

should seek to minimize the range of bulk density.

4. Discussion

4.1. Global Soil Calibration Parameters
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The correlation between observed and GSDE clay content was very strong (Figure 2a) for
all 61 sites in the CONUS except for the site in south central Texas. The site occurred near a
transition from vertisol to alfisol soil taxonomic groups; the site may have been improperly
categorized (Table S1) or may have straddled a sharp gradient in clay contents. The strong
correlation of the GSDE clay content with the observed values allowed us to use the GSDE clay
content in understanding the correlation between clay content and lattice water organized by US
soil taxonomic groups (Table 1). A strong correlation was only found for clay content and lattice
water for the mollisol soil taxonomic group (see Greacen, 1981; Zreda et al., 2012). This strong
correlation is significant because large portions of the Midwest and Great Plains regions of the
United States are made up of mollisol soils. Globally, mollisol soils comprise about 7% of the
land surface (United Nations 2007) but contain some of the highest productive grassland and
crop areas (i.e. Central USA, Argentina, Central Eurasia). As such, the roving CRNP method
remains applicable within grassland agricultural settings. No significant linear relationships with
clay content were found for alfisol, aridisol, entisol, inceptisol, spodosol, or ultisol. Instead the
mean value was assigned to the alfisol, aridisol, entisol, inceptisol, spodosol, and ultisol soil
taxonomic groups when generating the CONUS map. We found the differences in most of the
soil taxonomic mean values were statistically significant among different taxonomic groups
given the small standard errors of the means (not shown but can be calculated from data in Table
1). The current analysis did not contain enough samples for the soil taxonomic groups of andisol,
gelisol, histosol, oxisol, or vertisol to perform a linear regression or assign a mean value. We
recommend future work to consider repeating the analysis for a larger dataset using the FAO
2007 (United Nations 2007) soil classification of all 25 groups (also classified for our sites in

Table S1). Given the widespread interest in both the fixed and roving cosmic-ray technology, a
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421  database of lattice water and clay content for each site could be developed. In addition,

422  warehouses like the Natural Resources Conservation Service (NRCS) in Lincoln, NE contain
423  stored samples from around the USA. This warehouse with others around the globe could be

424 further sampled to help complete the global dataset for use by the cosmic-ray community.

425  Finally, the NRCS regularly updates the Soil Survey Geographic Database (SSURGO), which
426  contains higher spatial resolution and vertically resolved estimates of soil texture and structure
427  (i.e. clay content and bulk density). With the defined regression relationships and soil taxonomic
428  groups, better spatial maps of lattice water could be generated. This may become important for
429  applications of the rover at scales less than 1 km, such as using it for applications in precision

430  agriculture.

431 The correlation between the observed and GSDE soil organic carbon was fairly poor,

432 particularly at the high end (> 4 wt. %). The history of land use is critical in determining carbon
433 pools and how they change through time (Post et al., 2000) and may not be well represented in
434  the GSDE. However, we note that organic carbon has a relatively small impact on the calibration
435  function as it is multiplied by several factors in the calibration equation. For rover survey

436  experiments, we suggest that this be sampled with composite samples, particularly between sites

437  with varying land use histories which can be identified using historical land cover maps.

438 Observed in-situ soil bulk density and GSDE bulk density exhibited a positive

439 relationship, albeit with low R%. The poor fit and sensitivity of the parameter in the calibration
440  function increases the importance of identifying the range and variability of bulk density within
441  the rover sample domain. The variability shown here by the standard deviation of the bulk

442  density for the individual point samples within the 28 ha sample domain varied between 0.1 and

443 0.2 g/em’. Moreover, minimizing the expected range of bulk density at a site is key given the

20
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propagation of error analysis presented in section 3.3. Thus, this result supports direct sampling
at key locations (along gradients of land use, soil taxonomic groups, etc.) to constrain the range
of expected bulk density values. We also suggest that for rover surveys in the USA (and
elsewhere), additional higher resolution datasets like SSURGO be used instead of the 1 km
GSDE (in particular bulk density data as a function of depth), as significant small scale
variability may be averaged out. This may be critical to account for in future roving CRNP
research areas, such as precision agriculture or small scale watershed monitoring where

significant soil texture variation may exist at short length scales.

4.2. Global Remotely Sensed Vegetation Calibration Parameters

The comparison of 11 years of destructive vegetation samples from maize and soybeans
at 3 sites in eastern Nebraska indicated that the GrWDRVI was able to predict SWB in
agricultural fields, especially when partitioned into green-up vs. senescence and irrigated vs.
rainfed (Figure 4). However, as expected the GrWDRVI was unable to predict SDB. The main
reason is as the plants begin to dry out during the late summer and early fall, leaves lose their
chlorophyll and leaf structure beings to collapse thereby increasing reflected green and reducing
near-infrared light (Ciganda et al. 2008; Peng et al. 2011). This is exaggerated by a change in the
allocation of resources by the plant from leaves to grain, shifting where the majority of mass is
located and thus weakening the capacity for the GrWDRVI to predict SDB. This biological
investment of resources is more pronounced for maize than soybeans. As additional crops are
included in this analysis, the location and development of the fruit and seed will impact the

predictive relationships using vegetation indices.
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466 While the developed regression relationships for maize and soybean (Table S3) were

467  tested against independent biomass estimates from Waco, NE (Figure 5), we note that further
468  validation is needed. In terms of a strategy for estimating SDB, we suggest that proxies such as
469  crop type and growth stage be used. Franz et al. (2013 and 2015) found that in early stages,

470  maize and soybean had canopy water contents from 75-90 wt. %. By the end of senescence

471  before harvest, the canopy water contents were down to 25-35 wt. %. If growth stage is not

472 directly known, local meteorological observations, planting date, and crop variety can be used to
473  compute proxies (e.g. growing degree days) or simulated from crop models (Allen et al. 1998).
474 We note that having a reasonably accurate estimate of SWB and thus BWE (within ~ 1 kg/m?) is
475  all that is required to have a relatively small impact (< 0.01 cm’/cm’) on the estimated SWC.

476  Finally, we note that this methodology is not applicable to areas with woody biomass. Following
477  Franzet al., (2013), Hawdon et al., (2014), Baatz et al., (2015), and Coopersmith et al., (2014)
478  we suggest other vegetation relationships (i.e. BWE vs. Ny) be defined. However, given the

479  relatively small changes in BWE over the year in forests, we would expect small changes in N

480  through time.
481
482 5. Summary and Conclusions

483 In this work, we developed a framework using globally available datasets for estimating
484 four (By, Osoc, Pp, SWB) of the five key soil and vegetation parameters needed by the cosmic-
485  ray neutron method for estimating SWC in fast growing vegetation areas such as row crop

486  production in agricultural areas. The remaining crop vegetation parameter (SDB) can be fairly
487  well approximated by crop type, growth stage or simulated with crop models. The accuracy of

488  the GSDE soil database was tested against 61 calibration datasets from the CONUS. We found
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489  that the 1 km GSDE compares well against observed clay content (R? = 0.68) but much poorer
490  against soil bulk density (R? = 0.203) and soil organic carbon (R? = 0.175). Surprisingly, of
491 the six soil taxonomic groups we investigated, only mollisols showed a statistically significant
492  correlation with clay content. The remaining five soil taxonomic groups we investigated did
493  show statistically significant different mean values. These mean values were used to generate a
494  map (not complete) of lattice water for the CONUS. From 11 years of destructive sampling of
495  maize and soybean fields in eastern Nebraska, we found that the 8-day 500 m resolution MODIS
496  derived GrWDRVI was highly correlated to SWB, particularly when partitioning the fields into
497  green-up vs. senescence and irrigated vs. rainfed (RMSE < 1 kg/mz). A propagation of error
498  analysis indicated that the range of bulk density values was the most sensitive calibration

499  parameter. For the selected ranges, we found the GSDE vs. local sampling resulted in a

500 maximum RMSE of 0.035 ¢cm®/cm?® at a SWC = 0.40 cm®/cm’.

501 With the continuing use of the roving CNRP we make the following recommendations on

502  best calibration and use:

503 1) Collect a series (minimum of 7) of full calibration datasets (6., Osoc, pp, SWB, SDB)
504 in differing land use and soil types to estimate the instrument specific slope and intercept
505 for correction factor Ny.

506 2) In the rover sampling area, construct a map of land use including: vegetation/crop type,
507 planting date, variety, rainfed vs. irrigated, and gravel vs. paved roads vs. natural areas.
508 3) Collect a series of aggregate soil samples for soil organic carbon and lattice water around
509 the survey area. The samples should be collected across land use, soil texture, and soil
510 taxonomic groups. The GSDE or more local datasets like SSURGO in the USA can be
511 used to select sites, cross validate samples, and fill in missing areas.
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512 4) Soil bulk density is the critical parameter in the calibration equations and overall
513 accuracy of the cosmic-ray neutron method. Bulk density should be collected locally
514 wherever possible. More local datasets like SSURGO in the USA will likely perform
515 better at smaller scales than the 1 km GSDE.
516 5) SWC validation datasets should be collected to independently assess the accuracy of the
517 rover survey results.
518
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Table Captions

Table 1. Summary of mean, standard deviation of in-situ lattice water samples organized by USA
soil taxonomic groups. The table also summarizes a linear regression analysis using the GSDE
clay percent and in-situ sample. The last column indicates how the 1 km CONUS lattice water

map was generated. Note NA stands for not applicable because of a lack of data.

GSDE
USA Soil Mea'\n St(!' Number Linear Linear Linear Linear Derived
. Lattice Lattice . . . . CONUS
Taxonomic W of Regression | Regression | Regression | Regression .
Group ater Water Samples Slope Intercept R’ p value Lattice
(Wt. %) (Wt. %) Water
Product
Alfisol 431 1.36 9 6.09 -0.11 0.086 0.44330 Mean
Andisol NA NA NA NA NA NA NA NA
Aridisol 2.73 1.36 10 4.82 -0.15 0.095 0.38607 Mean
Entisol 1.47 0.93 5 2.48 -0.14 0.233 0.41064 Mean
Gelisol NA NA NA NA NA NA NA NA
Histosol NA NA NA NA NA NA NA NA
Inceptisol 4.98 0.28 2 NA NA NA NA Mean
Mollisol 3.18 1.22 24 1.03 0.11 0.539 0.00004 Linear
Oxisol NA NA NA NA NA NA NA NA
Spodosol 2.68 2.10 4 3.45 -0.11 0.020 0.85919 Mean
Ultisol 2.82 2.33 0.28 0.20 0.229 0.33672 Mean
Vertisol 5.18 NA 1 NA NA NA NA NA
ALL 3.16 1.58 61 1.68 0.09 0.183 0.00066 NA
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693  Table 2. Top) Summary of mean difference between in-situ samples and GSDE values (Figure 3)
694  for bulk density, lattice water and organic carbon. Bottom) Summary of covariance matrix of
695  difference between in-situ values and GSDE values. The mean difference and covariance data
696  were used in an error propagation analysis illustrated in Figure 6.
Bulk Density Lattice Water | Organic Carbon
(g/em’) (Wt. %) (Wt. %)
Mean Difference of in-situ
value - GSDE value -0.10035 -0.05789 -0.07077
Covariance matrix of in-situ value - GSDE value
Bulk Density Lattice Water | Organic Carbon
(g/em’) (Wt. %) (Wt. %)
Bulk Density (g/cm’) 0.0386 -0.0567 -0.2077
Lattice Water (Wt. %) 1.6745 0.3624
Organic Carbon (Wt. %) 3.5810
697
698
699  Table 3. Summary of 2014 GrWDRVI and calculated standing wet biomass for irrigated maize
700  and irrigated soybean fields near Waco, NE. Note that the senescence equation was applied to
701 DOY 209 for the irrigated maize field as planting date and development can vary locally. The
702 drop in GrWDRVI between DOY 201 and 209 is a clear indicator of change in plant growth stage
703  that can be used on a field by field basis.
Calculated Standing | Calculated Standing
DOY (i:::)lvgﬁz_l’ GIrXDalt{:;I- Wet Biomass- Wet Biomass-
(2014) Mgaize So gbean Irrigated Maize Irrigated Soybean
y (kg/m?) (kg/m?)
153 0.23 0.23 0.00 0.00
161 0.24 0.24 0.00 0.00
169 0.32 0.28 0.53 0.06
177 0.57 0.54 4.69 1.25
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185 0.55 NA 4.33 NA
193 0.63 0.63 5.63 1.91
201 0.61 0.71 5.34 2.48
209 0.55 0.73 6.50%* 2.61
217 0.57 0.74 6.58 2.67
225 0.50 0.73 6.27 2.61
233 0.47 0.74 6.07 NA
241 0.40 0.68 5.38 2.89
249 0.43 0.64 5.73 6.77
257 0.27 0.47 1.44 6.07
265 0.25 0.44 0.00 5.83
281 0.21 0.28 0.00 2.02
289 0.21 0.26 0.00 0.78
297 0.20 0.25 0.00 0.00
704
705

706  Table 4. Summary of 2014 observed standing wet biomass for irrigated maize and irrigated
707  soybean fields near Waco, NE. The observations represent the aggregation of 18 plants collected

708  at 6 different locations across the field on the sampling date.

DOY (2014), Observed Standing | 014), Observed Standing
. Wet Biomass- . Wet Biomass-
Irrigated . Irrigated . ;
Sovbean Irrigated Soybean Maize Irrigated Maize
' (kg/m’) (kg/m?)
167 0.19 161 0.13
196 1.63 183 2.40
211 1.81 217 6.22
259 1.63 259 0.30
709
710
711

712

34



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-92, 2016 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 2 March 2016 Sciences
(© Author(s) 2016. CC-BY 3.0 License.

Discussions

733 Figure Captions

734  Figure 1. Soil taxonomic classification map over the Continental United States of America using
735  the twelve USA soil taxonomic orders (data source FAO 2007 and personal communication with
736 M. Kuzila). Note gelisols are not present in the CONUS. Black dots indicate 61 locations where
737  we have in-situ composite/average samples for soil bulk density, soil lattice water, soil organic
738  carbon, and clay weight fraction collected over a 12.6 ha circle and averaged over the top 30 cm

739 (Table S1).

740

741  Figure 2. Comparison between 61 in-situ composite sample and GSDE value from the closest
742 pixel for a) clay weight percent b) soil bulk density, and c) soil organic carbon. d) Comparison
743 between in-situ lattice water and derived values using GSDE clay weight fraction and soil

744 taxonomic orders. See Table 1 for summary of data by taxonomic group, Table S1 for raw data,
745  and Table 2 for statistical summary of differences between in-situ and GSDE product. Note error

746  bars denote +/- 1 standard deviation.

747

748  Figure 3. Derived 1 km resolution lattice water weight percent map using the GSDE clay percent
749  and regression analyses organized by soil taxonomic classification. See Table 1 for estimates of
750  the mean, standard deviation, and linear regression vs. clay percent organized by taxonomic

751  group. Black dots indicate 61 locations where we have in-situ composite/average samples for soil
752 bulk density, soil lattice water, soil organic carbon, and clay weight fraction collected over a 12.6
753  hacircle and averaged over the top 30 cm (Table S1). Missing areas indicate surface water

754  bodies or soil taxonomic groups with no or limited in-situ lattice water sampling (see Table 1).
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755

756  Figure 4. Relationship between GrWDRVI and observed standing weight biomass for maize (a,
757  c¢) and soybean (b, d) partitioned into green-up (DOY< 210 for maize, DOY<230 for soybean)
758  and senescence. Destructive vegetation data is aggregated from 3 fields near Mead, NE between
759  2003-2013 (Table S2). The regression coefficients and equations are summarized in Table S3.
760  Note that the maize and soybean functions were subject to the constraints in order to provide
761  realistic behavior at the observed GrWDRVT and destructive vegetation sampling bounds. See

762  main text for details.
763

764  Figure 5. Time series of standing wet biomass for two study sites (irrigated maize and irrigated
765  soybean) near Waco, NE over the 2014 growing season. The graph contains the observed in-situ
766  sampling in addition to the GrWDRVI estimates using the equations summarized in Table S3.

767  See Table 3 for GrWDRVI values and Table 4 for in-situ estimates.
768

769  Figure 6. Propagation of error analysis using Monte Carlo simulations of 100,000 soil parameter
770  datasets of true soil parameters (i.e. soil bulk density, lattice water, soil organic carbon) and

771 perturbed parameters with matching mean differences and covariance matrix between in-situ

772 samples and GSDE derived parameters (see Table 2). Three error metrics are presented across a
773 range of neutron counts (and thus SWC values). Note that soil bulk density was constrained to
774 1.2-1.5 g/em’, lattice water was constrained from 1-8 wt. %, soil organic carbon was constrained
775  from 0-8 wt. %, and soil water content was constrained from 0.03-0.45 cm®/cm’. Simulated and

776  calculated values outside of these bounds were either reset to the minimum or maximum or
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777  removed from the Monte Carlo statistics. A minimum threshold of 70% of simulated cases were

778  used to compute error statistics.
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e In-Situ Sample Locations
U.S.A. Soil Taxonomic Orders
I Alfisol
D Andisol
[0 Aridisol
[ Entisol
- Histosol
B nceptisol
B Motiisol
C] Other Landscape Features
B spodosol
[ uttisol
B Vertisol

Figure 1. Soil taxonomic classificationmap overthe Continental United States of America usingthe twelve
USA soil taxonomic orders (datasource FAO 2007 and personal communication with M. Kuzila). Note
gelisols are not presentin the CONUS. Black dots indicate 6 1 locations where we have in-situ
composite/average samples for soil bulk density, soil lattice water, soil organic carbon, and clay weight
fraction collected overa 12.6 hacircle and averaged overthe top 30 cm (Table S1).
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Figure 2. Comparison between 6 1 in-situ composite sample and GSDE value from the closestpixel fora)
clay weightpercentb)soil bulk density, and ¢) soil organic carbon. d) Comparisonbetween in-situ lattice
water and derived values using GSDE clay weight fraction and soil taxonomic orders. See Table 1 for
summary ofdata by taxonomic group, Table S1 forraw data, and Table 2 forstatistical summary of
differences between in-situ and GSDE product. Note error bars denote +/- 1 standard deviation.
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Figure 3. Derived 1 kmresolution lattice water weight percent map using the GSDE clay percentand
regression analyses organized by soil taxonomic classification. See Table 1 forestimates ofthe mean,
standard deviation, and linear regression vs. clay percent organized by taxonomic group. Black dots indicate
61 locations where we havein-situ composite/average samples forsoil bulk density, soil lattice water, soil
organic carbon, and clay weight fraction collected overa 12.6 ha circleand averaged overthe top30 cm
(Table S1). Missingareas indicate surface water bodies or soil taxonomic groups withno or limited in-situ
lattice water sampling (see Table 1). 40



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-92, 2016 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 2 March 2016 Sciences
(© Author(s) 2016. CC-BY 3.0 License.

Discussions

a) 10 Maize, Green-up b) 4 Soybean, Green-up
—_ % Continuous Irrigated Maize O Rotation Irrigated
NE O Rotation Irrigated 3.5|| + Rotation Rainfed ®
= + Rotation Rainfed |- - Fit )
D 8 - ~ -
X - - Fit O O 3
© 25
5 x
o 2
2 1.5
o
£ 1
=]
C
8 0.5
]
0
0.8 1 1
C) 10 Maize, Senescense d) 4 Soybean, Senescense
«—
E 3.5
2 8 *
= 3 +
173
4
g 6 25
2 2
z ¢ ] 15
(=)} + x Continuous Irrigated Maize
% 2 . O Rotation Irrigated 1
c i + Rotation Rainfed O Rotation Irrigated
S iox - - Fit-Irrigated 0.5 + Rotation Rainfed
n ¥ ....... Fit-Rainfed - - Fit
0 £ 0
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
GrWDRVI GrWDRVI

Figure 4. Relationship between GrWDRVIand observed standing weight biomass formaize (a, ¢c)and
soybean (b, d) partitionedinto green-up (DOY<210 formaize, DOY<230 for soybean) and senescence.
Destructive vegetation datais aggregated from 3 fields near Mead, NE between 2003-2013 (Table S2). The
regression coefficients and equationsare summarizedin Table S3. Note that themaize and soybean
functions were subject to the constraints in orderto providerealisticbehaviorat the observed GrWDRVIand
destructive vegetation sampling bounds. See main text for details.
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Figure 5. Time series of standing wet biomass for two study sites (irrigated maize and irrigated soybean)
near Waco, NE overthe 2014 growing season. The graph contains the observed in-situ samplingin addition
to the GrWDRVIestimates using the equations summarized in Table S3. See Table 3 for GrWDRVIvalues
and Table 4 forin-situ estimates. 42
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Figure 6. Propagation oferror analysisusing Monte Carlo simulations 0f 100,000 soil parameter datasets of
true soil parameters (i.e. soil bulk density, lattice water, soil organic carbon) and perturbed parameters with
matching mean differences and covariance matrix between in-situ samples and GSDE derived parameters
(see Table 2). Three error metrics are presented acrossa range ofneutron counts (and thus SWCvalues).
Note that soil bulk density was constrained to 1.2-1.5 g/cn?, lattice water was constrained from 1-8 wt. %,
soil organic carbon was constrained from 0-8 wt. %, and soil water content was constrained from 0.03-0.45
cm?/cm?. Simulated and calculated values outside ofthese bounds were eitherreset to the minimum or
maximum or removed from the Monte Carlo statistics. Aminimum threshold 0of 70% of simulated cases
were used to compute error statistics. 43



