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Abstract 14	

The need for accurate, real-time, reliable, and multi-scale soil water content (SWC) 15	

monitoring is critical for a multitude of scientific disciplines trying to understand and predict the 16	

earth’s terrestrial energy, water, and nutrient cycles.  One promising technique to help meet this 17	

demand is fixed and roving cosmic-ray neutron probes (CRNP). However, the relationship 18	

between observed low-energy neutrons and SWC is affected by local soil and vegetation 19	

calibration parameters. This effect may be accounted for by a calibration equation based on local 20	
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soil type and the amount of standing biomass.  However, determining the calibration parameters 21	

for this equation is labor and time intensive, thus limiting the full potential of the roving CRNP 22	

in large surveys and long transects, or its use in novel environments. In this work, our objective 23	

is to develop and test the accuracy of using globally available datasets (clay weight percent, soil 24	

bulk density, and soil organic carbon) to support the operability of the CRNP. Here, we develop 25	

a 1 km product of soil lattice water over the CONtinental United States (CONUS) using a 26	

database of in-situ calibration samples and globally available soil taxonomy and soil texture data. 27	

We then test the accuracy of the global dataset in the CONUS using comparisons from 61 in-situ 28	

samples of clay percent (RMSE = 5.45 wt. %, R2 = 0.68), soil bulk density (RMSE = 0.173 29	

g/cm3, R2 = 0.203), and soil organic carbon (RMSE = 1.47 wt. %, R2 = 0.175). Next, we conduct 30	

an uncertainty analysis of the global soil calibration parameters using a Monte Carlo error 31	

propagation analysis (maximum RSME ~0.035 cm3/cm3 at a SWC = 0.40 cm3/cm3). In terms of 32	

vegetation, fast growing crops (i.e. maize and soybeans) contribute to the CRNP signal primarily 33	

through the water within their biomass and this signal must be minimized for accurate estimation 34	

of SWC. We estimated the biomass water signal by using a vegetation index derived from 35	

MODIS imagery as a proxy for standing wet biomass (RMSE < 1 kg/m2).  Lastly, we make 36	

recommendations on the design and validation of future roving CRNP experiments.   37	

 38	

1. Introduction 39	

By the year 2050, over nine billion people are predicted to inhabit the Earth (United 40	

Nations, 2015). The monumental task of feeding the projected global population will require a 41	

near doubling of grain production (FAO, 2009). As of today, the majority (~2/3) of water 42	

consumption by humans is used for agriculture, where approximately half of all global food 43	
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production comes from irrigated agriculture (Mekonnen et al., 2011). As such, an increase in 44	

food demand will put an even greater demand on fresh water resources, particularly an 45	

increasing reliance on groundwater (Mekonnen et al., 2011). The ability to model and forecast 46	

the hydrologic cycle will continue to play a major role in effective water resource management 47	

in the coming decades. Currently, most land surface models (LSM) aimed at characterizing the 48	

fluxes of water, energy, and nutrients, have relied on either sparse point scale SWC monitoring 49	

networks (Crow et al. 2012) or remote sensing products with large pixel sizes (~36 km) and 50	

shallow penetration depths (e.g., ~ 2-5 cm for SMOS; Kerr et al., 2010 and SMAP Entekhabi et 51	

al., 2010). A critical scale gap exists between these methods requiring innovative monitoring 52	

strategies (Robinson et al., 2008). Moreover, as LSMs continue to move towards highly refined 53	

spatial resolutions of 1 km or less (Wood et al., 2011), the need for accurate and spatially 54	

exhaustive SWC datasets continues to grow (Beven and Cloke, 2012). 55	

Estimating and monitoring SWC at the appropriate spatial and temporal scale for effective 56	

incorporation into LSMs has proven to be a difficult task. On one hand, monitoring networks at 57	

the regional (e.g., Nebraska Automated Weather Data Network; AWDN, Oklahoma Mesonet) 58	

and continental scales (Climate Reference Network; CRN, Soil Climate Analysis Network; 59	

SCAN) have continuously recording point sensors. However, these networks have limited spatial 60	

coherence due to the nature of point based SWC sensors only representing the point at which they 61	

are placed, and not the surrounding landscape (Vereecken et al., 2008). Techniques such as 62	

temporal stability analysis (Vachaud et al., 1985) can help improve the representativeness of the 63	

monitoring networks but require a priori spatial information. On the other hand, remote sensing 64	

satellites using passive microwaves can monitor global SWC data every few days albeit with 65	

large spatial footprints (~36 km, Entekhabi et al., 2010; Kerr et al., 2010). In addition, passive 66	

3

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-92, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 2 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



	
	

	

microwaves lack significant penetration depths (~ 2-5 cm Njoku et al., 1996), limiting their 67	

effectiveness as a remote sensing input for full root zone coverage in LSMs.  68	

Alternatively, the field of geophysics offers a variety of techniques to help fill the spatial 69	

and temporal gaps between point sensors and remote sensing products (Robinson et al., 2008). 70	

Bridging this gap requires both novel geophysical techniques and integrated modeling strategies 71	

capable of merging both point and remotely sensed data into a unified framework (Binley et al., 72	

2015). One promising geophysical technique to help fill this need is fixed (Desilets et al., 2010, 73	

Zreda et al., 2012) and roving cosmic-ray neutron probes (CRNP; Chrisman et al., 2013, Dong et 74	

al., 2014), which measures the ambient amount of low-energy neutrons in the air. The low-75	

energy neutrons are highly sensitive to the mass of hydrogen, and thus SWC, in the near surface 76	

(Zreda et al., 2012). CRNP estimate the area-average SWC because neutrons are well mixed 77	

within the footprint of the sensor which typically has a radius of ~300 m and depths of ~12-76 78	

cm (Desilets and Zreda 2013, Kohli et al., 2015).  79	

To date, the CRNP method has been mostly used as a fixed system in one location to 80	

continuously measure SWC as part of a large monitoring network (Zreda et al., 2012, Hawdon et 81	

al., 2014). Recent advancements have allowed the CRNP to be used in mobile systems to 82	

monitor transects across Hawaii (Desilets et al., 2010), monitor entire basins in southern Arizona 83	

(Chrisman et al., 2013), compare against remote sensing products in central Oklahoma (Dong et 84	

al., 2014), and monitor ~140 agricultural fields in eastern Nebraska (Franz et al., 2015). In order 85	

to accurately estimate SWC, the CRNP method relies on a calibration function to convert 86	

observed low-energy neutron counts into SWC (Desilets et al., 2010, Bogena et al., 2013, see 87	

Sec. 2.2 for full details). The calibration procedure requires site specific sampling of both soil 88	

and vegetation data in order to determine the required parameters. While the calibration of a 89	
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fixed CRNP is fairly standardized (Zreda et al., 2012; Franz et al., 2012; Iwema et al., 2015, 90	

Baatz et al., 2015), the heterogeneous nature of soil and vegetation characteristics across a 91	

landscape makes the pragmatic calibration of the mobile CRNP a significant challenge. 92	

Specifically, the presence of water within vegetation and the soil minerals may alter the shape of 93	

the local calibration function and thus accuracy of SWC. The need for reliable, accurate, depth-94	

dependent, and localized soil and vegetation spatial information for use in the calibration 95	

function is critical in order to fully harness the potential of the CRNP to monitor landscape scale 96	

SWC across the globe. 97	

The objective of this study is to explore the utility and accuracy of currently available 98	

global soil and vegetation datasets (soil organic carbon, soil bulk density, soil clay weight 99	

percent, and crop biomass) for use in the calibration function. To accomplish our objective, we 100	

aimed to answer the following questions: 101	

1) Can global datasets of soil bulk density, soil organic carbon, and soil clay weight percent be 102	

used to in lieu of in-situ sampling within reasonable error for use in the CRNP calibration 103	

function? 104	

2) Can the use of remotely sensed vegetation products, specifically the Green Wide Dynamic 105	

Range Vegetation Index (GrWDRVI) be used to quantify fresh biomass with reasonably low 106	

error (< 1 kg/m2) for use in the CRNP calibration function? 107	

To answer these questions, we tested the accuracy of these datasets against in-situ sample 108	

datasets of the same parameters. Existing in-situ datasets from across the CONUS were then 109	

combined with in-situ datasets from eastern Nebraska, which focused on fast growing crops of 110	

maize and soybean. Specifically, we tested the accuracy and use of a ~1 km global soil dataset 111	
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(Shangguan et al., 2014). In addition, we examined the use of the Green Wide Dynamic Range 112	

Vegetation Index (GrWDRVI, Gitelson, 2004) derived from NASA’s MODIS sensor aboard the 113	

Terra satellite for use in estimating the amount of fresh crop biomass.  114	

 The remainder of the paper is organized as follows: In the Methods section, the CRNP 115	

method is first presented, with emphasis on the integration of the calibration function and soil 116	

and vegetation parameters to convert observed low-energy neutron counts into SWC. Next, in-117	

situ methods for estimating the soil and vegetation calibration parameters are discussed, which is 118	

followed by discussions on the soil and vegetation products available globally at ~1 km 119	

resolution. In the Results section, we first compare the in-situ soil sampling against the global 120	

datasets. Next, we develop a 1 km CONUS soil lattice water map using in-situ samples. We then 121	

compare the GrWDRVI against in-situ samples from Nebraska to estimate the changes in maize 122	

and soybean fresh biomass. Lastly, we present an error propagation analysis investigating the 123	

potential uncertainty of using the global soil calibration data vs. local in-situ sampling. The paper 124	

concludes with a discussion on best practice recommendations for calibrating and validating a 125	

roving CRNP experiment. 126	

 127	

2. Methods 128	

2.1 Overview of Cosmic-ray Neutron Probe 129	

The CRNP estimates area-averaged SWC via measuring the intensity of epithermal 130	

neutrons near the ground surface (Zreda et al. 2008, 2012). A cascade of neutrons with varying 131	

energy levels are created in the earth’s atmosphere when incoming higher energy particles 132	

produced within supernovae interact with atmospheric nuclei (Zreda et al., 2012 and Kohli et al., 133	
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2015). After fast neutrons are created, they continue to lose energy during numerous collisions 134	

with nuclei in air and soil, and become epithermal neutrons (i.e., the neutrons which are 135	

primarily measured by the moderated detector). The abundance of hydrogen atoms in the air and 136	

soil largely controls the removal rate of epithermal neutrons from the system (Zreda et al. 2012). 137	

Water in the near surface soil (i.e. SWC) is one of the largest sources of hydrogen present in 138	

terrestrial systems (McJannet et al. 2014). Thus, relative changes in the intensity of epithermal 139	

neutrons are overwhelmingly due to changes in the SWC. However, the shape of the calibration 140	

function (see section 2.2) is modified by local soil and vegetation parameters (Zreda et al. 2012) 141	

reflecting the variation of background hydrogen levels across landscapes. 142	

Using a standard neutron detector with a 2.54 cm layer of plastic, Zreda et al. (2008) first 143	

described the support volume the detector measures to be a circle of ~300 m in radius with 144	

vertical penetration depths of 12 to 76 cm depending on SWC. Recent neutron transport 145	

modeling has further refined the footprint area to be a function of atmospheric water vapor, 146	

elevation (Desilets and Zreda, 2013), surface heterogeneity (Kohli et al., 2015), vegetation, and 147	

SWC.  Given the large measurement footprint area at tens of hectares, this non-invasive 148	

technique is an ideal complement to long-term surface energy balance monitoring around the 149	

globe. Currently, there are >200 fixed CRNP (personal communication with Darin Desilets of 150	

HydroInnova LLC, Albuquerque, NM) functioning in this capacity around the United States of 151	

America (Zreda et al., 2012), Australia (Hawdon et al., 2014), Germany (Baatz et al., 2015), 152	

South Africa, China, and the United Kingdom. The real-time SWC data provide critical 153	

infrastructure for use in weather forecasting and data assimilation in LSMs (Shuttleworth et al., 154	

2013, Rosolem et al., 2014, Renzullo et al., 2014).  155	
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In addition to the fixed CRNP measuring hourly SWC, a roving version of the CRNP has 156	

been used to reliably measure SWC at temporal resolutions as low as 1 minute (Chrisman et al., 157	

2013; Dong et al., 2014) providing the ability to make SWC maps over hundreds of square 158	

kilometers in a single day. Moreover, Franz et al. (2015) found that a combination of fixed and 159	

roving CRNP data in a statistical framework has the ability to form an accurate, real-time, and 160	

multiscale monitoring network. With the continued increase in observation spatial scales, the use 161	

of in-situ sampling in the traditional CRNP calibration procedure is no longer practical, thus 162	

requiring the use of alternative available datasets to improve its operability. The remainder of 163	

this work will first describe the availability of such global datasets and then test the accuracy of 164	

using the datasets in the CNRP calibration function.   165	

 166	

2.2 The Cosmic-ray Neutron Probe Calibration Function 167	

In order to convert observed epithermal neutron measurements into SWC, a series of 168	

correction factors and calibration functions have been developed.  Zreda (2012) describes in 169	

detail the correction factors needed for geomagnetic latitude, changes in incoming high-energy 170	

cosmic-ray intensity, and atmospheric pressure. Rosolem et al. (2013) further describes a 171	

correction factor for changes in absolute air humidity near the surface. Following these four 172	

correction factors, the corrected epithermal neutron counts can be converted into SWC. Desilets 173	

et al. (2010) proposed the original calibration function (Eq. 1) valid for mass based gravimetric 174	

measurements which Bogena et al. (2013) further expanded for volumetric water content. The 175	

calibration function has been successfully tested against direct sampling and point sensor 176	

measurements with RMSE < 0.03 cm3/cm3 across the globe including arid shrublands in 177	

Arizona, USA (Franz et al., 2012), semi-arid forests in Utah, USA (Lv et al., 2014), to humid 178	
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forests in Germany (Bogena et al., 2013), and across ecosystems in Australia (Hawdon et al., 179	

2014). The original calibration function proposed by Desilets et al., (2010) is: 180	

!" =
$%

&
&%
'$(

− *+         (1) 181	

where !" (g/g) is the total gravimetric water content, *, = 0.0808,	*.= 0.3720, *+ = 0.1150 (see 182	

Desilets et al., (2010) for details), /(counts per time interval) is the aforementioned epithermal 183	

corrected neutron count rate, and /, (counts per time interval) is the theoretical counting rate at a 184	

location with dry silica soils. Zreda et al. (2012) illustrated that:  185	

!" = !0 + !23 + !456        (2) 186	

where !0 (g/g) is the gravimetric pore water content in the soil, !23 (g/g) is the soil lattice water, 187	

and !456  (g/g) is the soil organic carbon water equivalent. The volumetric soil water content, 188	

SWC, (cm3/cm3) is found by multiplying !0 by 78
79

, where :; (g/cm3) is dry soil bulk density and 189	

:< = 1 g/cm3 is the density of water.  190	

To account for effects of time varying above-ground vegetation on the epithermal neutron 191	

counts (Franz et al., 2013; Coopersmith et al., 2014), Franz et al. (2015) proposed the following 192	

additional correction factor to /,: 193	

/, =>? = @ ∗ =>? + /, 0       (3) 194	

where /, 0  is the instrument specific estimate of /, with no standing biomass, =>? is the 195	

biomass water equivalent (kg/m2 ~ mm of water/m2), and @ is the slope of the relationship 196	

between /, and =>?, determined via in-situ calibration datasets. The =>? is further defined 197	

as: 198	
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=>? = C>= − CD= + CD= ∗ E3F       (4) 199	

where C>= is the standing wet biomass per unit area (kg/m2 ~ mm of water/m2), CD= is the 200	

standing dry biomass per unit area (kg/m2 ~ mm of water/m2), and E3F = 0.494 is the 201	

stoichiometric ratio of H2O to organic carbon (assuming organic carbon is cellulose, C6H10O5). 202	

Using nine in-situ calibration datasets for maize and soybean crops, Franz et al. (2015) found 203	

their roving CRNP had a statistically significant linear relationship between /, and =>? 204	

yielding /, 0 = 518.34 counts per minute and	@ = −4.9506 (R2 = 0.515 and p-value = 0.03). 205	

We note the coefficients are less suitable for forest canopies given the need for a neutron 206	

geometric efficiency factor described further in the supplemental material of Franz et al. (2013). 207	

We also refer the reader to Coopersmith et al. (2014) and Baatz et al. (2015) for further 208	

discussion of CRNP use in forest canopies. 209	

 210	

2.3 In-situ Soil and Vegetation Calibration Parameters 211	

The calibration function summarized in equations (1-4) requires depth-average estimates 212	

of three soil parameters,	!23, !456 , and :;, and two vegetation parameters C>= and CD=. In 213	

order to estimate area-average soil parameters, Zreda et al. (2012) and Franz et al. (2012) 214	

recommended averaging 108 individual in-situ soil samples from 18 locations (every 60 degrees 215	

and radii of 25, 75, 200 m) and six depths (every 5 cm from 0-30 cm) within a CRNP footprint. 216	

In light of recent modeling work (Kohli et al. 2015), this sampling pattern may need to be 217	

adjusted to be more representative of encountered conditions (such as shorter sampling distances 218	

due to reduced footprint area). Zreda et al. (2012) found that a composite sample of 1 g of 219	

material gathered from each of the 108 samples was adequate to estimate !23 and !456 . These 220	
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composite samples can be analyzed directly for lattice water (g/g), soil total carbon (TC, g/g), 221	

and inorganic carbon (TIC, g/g) determined by measuring CO2 after the sample is acidified (e.g. 222	

by Actlabs of Ontario Canada, Analysis Codes: 4E-exploration, 4F-CO2, 4F-C, and 4F-H2O+/-). 223	

Franz et al. (2015) reported !456 = OP − OQP ∗ 1.724 ∗ E3F, where 1.724 is a constant to 224	

convert total organic carbon into total organic matter and E3F is given above. To estimate :; at 225	

each location, Zreda et al. (2012) used a 30 cm long split tube auger, which contained six 5 cm 226	

diameter by 5 cm length rings. All samples were then averaged to get a composite value.  227	

In order to estimate standing wet biomass (SWB) and standing dry biomass (SDB) in 228	

maize and soybeans, Franz et al. (2015) measured average plant density in 1 m2 quadrats at each 229	

of the 18 sampling locations. In a subset of six sites (randomly chosen one radius for each of the 230	

six transects) three plants were removed and placed in a paper bag for weighing within two hours 231	

(to minimize water loss). The plants were then dried for five days at 70o C and weighed again. 232	

Using the density of plants, wet weight, and dry weight, SWB and SDB can be determined at each 233	

site and averaged across the CRNP footprint. 234	

 235	

2.4 Global Datasets of Soil Properties 236	

Shangguan et al. (2014) compiled a thirty arc second (~1 km) Global Soil DatasEt 237	

(GSDE) with 34 soil parameters in 8 layers (0–0.045, 0.045–0.091, 0.091–0.166, 0.166–0.289, 238	

0.289–0.493, 0.493–0.829, 0.829–1.383, and 1.383–2.296 m). In order to construct an average 239	

value relevant to the CRNP, we arithmetically averaged the top four layers in each grid location 240	

to form a composite value (~30 cm) over the CONUS. The GSDE contains estimates of soil bulk 241	

density and soil organic carbon. In order to construct a map of lattice water, we explored if any 242	
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relationships existed between clay weight fraction and lattice water following the work of 243	

Greacen et al. (1981) using active neutron probe calibration procedures developed for Australian 244	

soils. In order to account for variations in chemical and physical weathering on lattice water 245	

(Zreda et al., 2012), we further partitioned the analyses based on soil order. A global soil order 246	

map with a resolution of five arc minutes (~ 8 km) containing 25 major soil classifications was 247	

first uploaded to ArcMap (ESRI, v. 10.2.2) and clipped to the CONUS. The 25 soil 248	

classifications were then categorized into 12 major classifications of U.S. soil taxonomy (see Fig. 249	

1, personal communication with Prof. M. Kuzila, University of Nebraska-Lincoln). The 250	

reduction from 25 to 12 soil classifications allowed us to generate larger sample sizes for each 251	

classification from the available calibration datasets. Using the available lattice water samples 252	

from Zreda et al. (2012) and additional samples collected in-situ over 2014, we analyzed if any 253	

statistically significant relationships existed between GSDE clay weight percent and 61 in-situ 254	

lattice water samples for each of the US soil orders (Table S1). We note that this procedure could 255	

be used globally if in-situ lattice water samples were available for all 25 soil taxonomic groups. 256	

From these relationships, a map of the CONUS lattice water weight percent was developed by 257	

using either the mean value of the in-situ lattice water or the linear relationships between clay 258	

weight percent (from the GSDE) and the lattice water in-situ samples. Additionally, in-situ 259	

samples of soil organic carbon, bulk density, clay weight percent, and lattice water were 260	

compared against the same parameters derived from the GSDE.  261	

 262	

2.5 Global Datasets of Vegetation Properties 263	

In order to estimate SWB and SDB, we downloaded remotely sensed 500 m MODIS 264	

reflectance data from NASA’s Terra satellite (http://earthexplorer.usgs.gov/). To calibrate and 265	
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validate the in-situ vegetation data to the remotely sensed vegetation estimates, we sampled two 266	

different agricultural areas in eastern Nebraska. The MODIS reflectance data were used to 267	

generate various vegetation indices (see detailed information below), and then calibrated against 268	

historical biomass data (2003-2013) from 3 fields near Mead, NE. Each field is part of the 269	

AmeriFlux network (http://ameriflux.ornl.gov/) with data going back to 2001 (site description 270	

given in Suyker et al., 2005). Each field is approximately 65 ha.  Field 1 (Mead Irrigated/US-271	

Ne1, 41.1650°, -96.4766°) is irrigated with continuous maize. Field 2 (Mead Irrigated 272	

Rotation/US-Ne2, 41.1649°, -96.4701°) is irrigated with a rotation of maize and soybean. Field 3 273	

(Mead Rainfed/US-Ne3, 41.1797°, -96.4396°) is rainfed with a rotation of maize and soybean. 274	

At these three fields, destructive biomass samples were collected approximately every two weeks 275	

at 6 different locations in the field, typically consisting of 30-35 individual plants per sampling 276	

bout. From the destructive sampling bouts, we were able to compute SWB and SDB. The sites, 277	

with their long sampling records consisting of both rainfed and irrigated soybean and maize, are 278	

an ideal location for calibrating the remote sensing reflectance data and vegetation indices. In 279	

order to validate the derived vegetation index and coefficients from the above mentioned three 280	

sites, we used 4 bouts of destructive biomass sampling at two fields (each approx. 65 ha.) during 281	

2014 near Waco, NE (Franz et al. 2015). The fields were irrigated maize (40.9482°, -97.4875°) 282	

and irrigated soybean (40.9338°, -97.4587°). SWB and SDB were collected following the 283	

protocol described in section 2.3.  284	

 A total of 924 MODIS images over the growing seasons (May to October) between 2003 285	

and 2014 were downloaded for calibration and validation of the corresponding destructive 286	

biomass samples at the five field sites in central and eastern Nebraska (note: MODIS images 287	

from the closest date to in-situ sampling were used with up to a 4 day offset). Using the Python 288	
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Integrated Development Environment (v. 2.7.8) built into ArcGIS (v. ESRI, v. 10.2.2), we 289	

extracted the MODIS reflectance data in the green and near-infrared electromagnetic spectrum 290	

range. Next, we removed any pixels that were skewed by incidental cloud cover (Nguy-291	

Robertson & Gitelson, 2015). The resulting data were then transformed from separate reflectance 292	

images into the Green Wide Dynamic Range Vegetation Index (GrWDRVI; Gietelson, 2004): 293	

TU>DVWQ = 	 (,..∗YZ$[	\]^[$[Z_'`[ZZ])
(,..∗YZ$[	\]^[$[Z_b`[ZZ])

     (5)  294	

where near-infrared light (MODIS band 2) has wavelength between 841 and 876 nm and green 295	

light (MODIS band 4) has wavelength between 545 and 565 nm. The GrWDRVI has been shown 296	

to have better correlations with observed in-situ biomass as compared to other vegetation indices 297	

such as NDVI (Nguy-Robertson et al., 2012; Nguy-Robertson & Gitelson, 2015). We then 298	

investigated if any relationships existed between GrWDRVI and SWB and SDB.  299	

 300	

2.6 Error Propagation Analysis of GSDE Soil Properties 301	

We used a Monte Carlo analysis to estimate the expected uncertainty if the GSDE 302	

parameters were used instead of in-situ estimates. The statistical metrics of root mean square 303	

error (RMSE), mean absolute error (MAE), and bias were used to describe the error propagation 304	

in the Monte Carlo simulation experiment. Using the 61 CONUS in-situ samples and the GSDE 305	

soil properties, we estimated the mean difference and the covariance matrix for !23, !456 , and 306	

:;. Using these data, we simulated 100,000 realizations of the “true” (i.e. from the in-situ 307	

sampling) and perturbed soil properties using a multivariate normal distribution. Using a range of 308	

observed neutron counts and solving equations (1-2) with the true and perturbed soil properties, 309	

we also estimated the true and perturbed SWC. In order to provide realistic constraints on the 310	
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error propagation results, we assumed soil bulk density was constrained between 1.2-1.5 g/cm3, 311	

lattice water between 1-8 wt. %, soil organic carbon between 0-8 wt. %, and SWC between 0.03-312	

0.45 cm3/cm3. Simulated and calculated values outside of these bounds were either reset to the 313	

minimum or maximum value or removed from the Monte Carlo statistics. A minimum threshold 314	

of 70% of simulated cases was used to compute all error statistics for each case. We note that the 315	

effects of growing biomass were not included here given the lack of available calibration datasets 316	

at all sites, but could be incorporated in future work following a similar methodology. 317	

  318	

3. Results 319	

3.1. Comparison of In-situ and Global Soil Calibration Parameters  320	

The comparisons between observed clay weight percent, soil bulk density, soil organic 321	

carbon and the GSDE values are summarized in Table S1 and Figure 2 a, b, c for the 61 322	

sampling sites within the CONUS. Other than 1 outlier (south central Texas, 29.9492o, -323	

97.9966o, which is located on the border between vertisols and alfisol soils), the comparison 324	

between the mean observed and GSDE clay weight percent (of sites that had clay weight 325	

percent) behaved well (RMSE = 5.45 wt. %, R2 = 0.68) considering the difference in scale and 326	

methods. The comparisons between soil bulk density (RMSE = 0.173 g/cm3, R2 = 0.203) and soil 327	

organic carbon as it was during the various 2011-2014 sampling campaigns, (RMSE = 1.47 wt. 328	

%, R2 = 0.175) generally followed the same positive trend.  329	

In order to construct a map of the CONUS lattice water, we investigated if any significant 330	

relationships existed between GSDE clay wt. % and observed lattice water for each US soil 331	

taxonomic group (Table 1) following the relationships described from observations in Australian 332	
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soils (Greacen, 1981). We found that a significant linear relationship existed between clay wt. % 333	

and lattice water for all 61 sites (R2 = 0.183, p value <0.001). However, after partitioning the 334	

sites into soil taxonomic groups, only the mollisol taxonomic group yielded a statistically 335	

significant relationship (R2 = 0.539, p value <0.001). Therefore, in order to construct a CONUS 336	

lattice water map, we used the mean values for six taxonomic groups and neglected the 337	

remaining five taxonomic groups due to an inadequate number of samples (Figure 3). Figure 2d 338	

illustrates the comparison between the derived and observed lattice water for the 61 CONUS 339	

sites (RMSE = 1.299 wt. %, R2 = 0.315). Table S1 summarizes the observed and GSDE values 340	

for all 61 sites and Table 2 summarizes the mean difference and covariance matrix between the 341	

in-situ values and GSDE values. The mean difference and covariance differences were used in 342	

the error propagation analysis described in section 2.6 and 3.3. We note that each of the mean 343	

differences followed a normal distribution (see Table S1 for in-situ and GSDE values). 344	

 345	

3.2. Comparison of In-situ and Remotely Sensed Vegetation Calibration Parameters  346	

Using the 11 years of destructive vegetation sampling from 3 fields near Mead, NE, we 347	

found that the GrWDRVI was able to predict SWB when partitioning the data into maize and 348	

soybean, irrigated and rainfed, and green-up/mature and senescence periods of crop development 349	

(Figure 4 and Tables S2 and S3). Figure 3a and 3b illustrate the logistic functions that were used 350	

to predict SWB for maize green-up (RMSE = 0.88 kg/m2) and soybean green-up (RMSE = 0.47 351	

kg/m2). We note that SWB relationships with GrWDRVI indicate that GrWDRVI values less than 352	

0.25 equated to the absence of SWB. During senescence, we found that a second order power law 353	

function fit the data well. We found the maize senescence functions (DOY> 210) needed to be 354	

further partitioned by irrigated and rainfed conditions as limitations in soil water will occur more 355	
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quickly with mature plants that utilize the entire root zone. The resulting functions for irrigated 356	

maize during senescence (RMSE = 0.75 kg/m2) and rainfed maize during senescence (RMSE = 357	

0.92 kg/m2) behaved well. For the soybean senescence function (DOY>230), we found a single 358	

function behaved reasonably well for both irrigated and rainfed conditions (RMSE = 0.45 359	

kg/m2). As expected from previous research (Ciganda et al, 2008; Peng et al. 2011), we found 360	

that the GrWDRVI was a poor predictor of SDB/percent water content of the vegetation. We will 361	

discuss these reasons and alternative strategies for estimating SDB in section 4.2. 362	

Using the derived relationships from the three study sites near Mead, NE, we applied the 363	

equations to our two study sites near Waco, NE (~ 88 km from Mead, NE, Figure 5 and Tables 3 364	

and 4). Figure 5 illustrates the time series of SWB using the 8 day MODIS product and derived 365	

equations for both field sites. The figure also illustrates the observed destructive sampling for 4 366	

different sampling bouts. With the limited data, we found the time series of SWB calculated from 367	

the MODIS data followed the expected green-up and senescence SWB behavior for both the 368	

irrigated maize and soybean. The GrWDRVI derived SWB largely captured the maximum 369	

observed value for both the irrigated maize (6.58 kg/m2 vs. 6.2 kg/m2) and irrigated soybean 370	

(2.61 kg/m2 vs. 1.81 kg/m2). The largest discrepancy was during the maize green-up period 371	

(DOY 183) where the observed value was 2.4 kg/m2 and ~4.0 kg/m2 calculated from the 372	

GrWDRVI. While the derived equations behaved well for this limited validation dataset, the 373	

equations should be tested at additional sites where other crop and soil types may influence the 374	

function coefficients.  Overall, the equations and regression fits resulting in RMSE < 1 kg/m2 are 375	

within the uncertainty of destructive biomass sampling in crops (Franz et al., 2013; 2015). By 376	

having general SWB relationships (for eastern Nebraska) through time using the 8 day MODIS 377	

17

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-92, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 2 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



	
	

	 	

data, this could allow for reasonable biomass corrections to N0 with minimal effects (<0.01 378	

cm3/cm3) on the overall estimation of SWC.  379	

 380	

3.3. Error Propagation Analysis of GSDE Soil Properties 381	

 In order to further assess the accuracy of our datasets, we synthetically altered the 382	

parameters via a Monte Carlo error analysis.  This was done using the GSDE soil parameters 383	

(!23, !456 , and :;) as compared to using local sampling (Figure 6). The analysis revealed that 384	

for the given bounds of !23, !456 , and :;, the maximum RSME was around 0.035 cm3/cm3 at a 385	

SWC = 0.40 cm3/cm3. The asymmetric shape of all the curves is expected given the nonlinear 386	

calibration function in Eq. (4) and the bounded nature of soil moisture. We found that :; was by 387	

far the most sensitive parameter, followed by !23 and then !456 . We expect the influence of 388	

vegetation changes to be small on the overall accuracy of SWC (<0.01 cm3/cm3) given the low 389	

RMSE described in section 3.2 (< 1 kg/m2, which is ~1 mm of water or 0.0033 cm3/cm3 for a soil 390	

depth of 300 mm). We also note the critical factor in the error propagation analysis is the 391	

assumed range of :;, given that it is directly multiplied by the gravimetric water content in the 392	

calibration function. Therefore, future sampling efforts or evaluations of available datasets 393	

should seek to minimize the range of bulk density. 394	

 395	

4. Discussion 396	

4.1. Global Soil Calibration Parameters  397	
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The correlation between observed and GSDE clay content was very strong (Figure 2a) for 398	

all 61 sites in the CONUS except for the site in south central Texas. The site occurred near a 399	

transition from vertisol to alfisol soil taxonomic groups; the site may have been improperly 400	

categorized (Table S1) or may have straddled a sharp gradient in clay contents. The strong 401	

correlation of the GSDE clay content with the observed values allowed us to use the GSDE clay 402	

content in understanding the correlation between clay content and lattice water organized by US 403	

soil taxonomic groups (Table 1). A strong correlation was only found for clay content and lattice 404	

water for the mollisol soil taxonomic group (see Greacen, 1981; Zreda et al., 2012). This strong 405	

correlation is significant because large portions of the Midwest and Great Plains regions of the 406	

United States are made up of mollisol soils.  Globally, mollisol soils comprise about 7% of the 407	

land surface (United Nations 2007) but contain some of the highest productive grassland and 408	

crop areas (i.e. Central USA, Argentina, Central Eurasia).  As such, the roving CRNP method 409	

remains applicable within grassland agricultural settings. No significant linear relationships with 410	

clay content were found for alfisol, aridisol, entisol, inceptisol, spodosol, or ultisol. Instead the 411	

mean value was assigned to the alfisol, aridisol, entisol, inceptisol, spodosol, and ultisol soil 412	

taxonomic groups when generating the CONUS map. We found the differences in most of the 413	

soil taxonomic mean values were statistically significant among different taxonomic groups 414	

given the small standard errors of the means (not shown but can be calculated from data in Table 415	

1). The current analysis did not contain enough samples for the soil taxonomic groups of andisol, 416	

gelisol, histosol, oxisol, or vertisol to perform a linear regression or assign a mean value. We 417	

recommend future work to consider repeating the analysis for a larger dataset using the FAO 418	

2007 (United Nations 2007) soil classification of all 25 groups (also classified for our sites in 419	

Table S1). Given the widespread interest in both the fixed and roving cosmic-ray technology, a 420	
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database of lattice water and clay content for each site could be developed. In addition, 421	

warehouses like the Natural Resources Conservation Service (NRCS) in Lincoln, NE contain 422	

stored samples from around the USA. This warehouse with others around the globe could be 423	

further sampled to help complete the global dataset for use by the cosmic-ray community. 424	

Finally, the NRCS regularly updates the Soil Survey Geographic Database (SSURGO), which 425	

contains higher spatial resolution and vertically resolved estimates of soil texture and structure 426	

(i.e. clay content and bulk density). With the defined regression relationships and soil taxonomic 427	

groups, better spatial maps of lattice water could be generated. This may become important for 428	

applications of the rover at scales less than 1 km, such as using it for applications in precision 429	

agriculture.   430	

The correlation between the observed and GSDE soil organic carbon was fairly poor, 431	

particularly at the high end (> 4 wt. %). The history of land use is critical in determining carbon 432	

pools and how they change through time (Post et al., 2000) and may not be well represented in 433	

the GSDE. However, we note that organic carbon has a relatively small impact on the calibration 434	

function as it is multiplied by several factors in the calibration equation. For rover survey 435	

experiments, we suggest that this be sampled with composite samples, particularly between sites 436	

with varying land use histories which can be identified using historical land cover maps.  437	

Observed in-situ soil bulk density and GSDE bulk density exhibited a positive 438	

relationship, albeit with low R2.  The poor fit and sensitivity of the parameter in the calibration 439	

function increases the importance of identifying the range and variability of bulk density within 440	

the rover sample domain. The variability shown here by the standard deviation of the bulk 441	

density for the individual point samples within the 28 ha sample domain varied between 0.1 and 442	

0.2 g/cm3. Moreover, minimizing the expected range of bulk density at a site is key given the 443	
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propagation of error analysis presented in section 3.3. Thus, this result supports direct sampling 444	

at key locations (along gradients of land use, soil taxonomic groups, etc.) to constrain the range 445	

of expected bulk density values. We also suggest that for rover surveys in the USA (and 446	

elsewhere), additional higher resolution datasets like SSURGO be used instead of the 1 km 447	

GSDE (in particular bulk density data as a function of depth), as significant small scale 448	

variability may be averaged out. This may be critical to account for in future roving CRNP 449	

research areas, such as precision agriculture or small scale watershed monitoring where 450	

significant soil texture variation may exist at short length scales. 451	

 452	

4.2. Global Remotely Sensed Vegetation Calibration Parameters  453	

 The comparison of 11 years of destructive vegetation samples from maize and soybeans 454	

at 3 sites in eastern Nebraska indicated that the GrWDRVI was able to predict SWB in 455	

agricultural fields, especially when partitioned into green-up vs. senescence and irrigated vs. 456	

rainfed (Figure 4). However, as expected the GrWDRVI was unable to predict SDB. The main 457	

reason is as the plants begin to dry out during the late summer and early fall, leaves lose their 458	

chlorophyll and leaf structure beings to collapse thereby increasing reflected green and reducing 459	

near-infrared light (Ciganda et al. 2008; Peng et al. 2011). This is exaggerated by a change in the 460	

allocation of resources by the plant from leaves to grain, shifting where the majority of mass is 461	

located and thus weakening the capacity for the GrWDRVI to predict SDB. This biological 462	

investment of resources is more pronounced for maize than soybeans. As additional crops are 463	

included in this analysis, the location and development of the fruit and seed will impact the 464	

predictive relationships using vegetation indices. 465	
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 While the developed regression relationships for maize and soybean (Table S3) were 466	

tested against independent biomass estimates from Waco, NE (Figure 5), we note that further 467	

validation is needed. In terms of a strategy for estimating SDB, we suggest that proxies such as 468	

crop type and growth stage be used. Franz et al. (2013 and 2015) found that in early stages, 469	

maize and soybean had canopy water contents from 75-90 wt. %. By the end of senescence 470	

before harvest, the canopy water contents were down to 25-35 wt. %. If growth stage is not 471	

directly known, local meteorological observations, planting date, and crop variety can be used to 472	

compute proxies (e.g. growing degree days) or simulated from crop models (Allen et al. 1998). 473	

We note that having a reasonably accurate estimate of SWB and thus BWE (within ~ 1 kg/m2) is 474	

all that is required to have a relatively small impact (< 0.01 cm3/cm3) on the estimated SWC. 475	

Finally, we note that this methodology is not applicable to areas with woody biomass. Following 476	

Franz et al., (2013), Hawdon et al., (2014), Baatz et al., (2015), and Coopersmith et al., (2014) 477	

we suggest other vegetation relationships (i.e. BWE vs. N0) be defined. However, given the 478	

relatively small changes in BWE over the year in forests, we would expect small changes in N0 479	

through time. 480	

 481	

5. Summary and Conclusions 482	

In this work, we developed a framework using globally available datasets for estimating 483	

four (!23, !456 , :;, C>=)  of the five key soil and vegetation parameters needed by the cosmic-484	

ray neutron method for estimating SWC in fast growing vegetation areas such as row crop 485	

production in agricultural areas. The remaining crop vegetation parameter (SDB) can be fairly 486	

well approximated by crop type, growth stage or simulated with crop models. The accuracy of 487	

the GSDE soil database was tested against 61 calibration datasets from the CONUS. We found 488	
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that the 1 km GSDE compares well against observed clay content (V+ = 0.68)	but much poorer 489	

against soil bulk density (V+ = 0.203) and soil organic carbon (V+ = 0.175). Surprisingly, of 490	

the six soil taxonomic groups we investigated, only mollisols showed a statistically significant 491	

correlation with clay content. The remaining five soil taxonomic groups we investigated did 492	

show statistically significant different mean values.  These mean values were used to generate a 493	

map (not complete) of lattice water for the CONUS. From 11 years of destructive sampling of 494	

maize and soybean fields in eastern Nebraska, we found that the 8-day 500 m resolution MODIS 495	

derived GrWDRVI was highly correlated to SWB, particularly when partitioning the fields into 496	

green-up vs. senescence and irrigated vs. rainfed (RMSE < 1 kg/m2). A propagation of error 497	

analysis indicated that the range of bulk density values was the most sensitive calibration 498	

parameter. For the selected ranges, we found the GSDE vs. local sampling resulted in a 499	

maximum RMSE of 0.035 cm3/cm3 at a SWC = 0.40 cm3/cm3. 500	

 With the continuing use of the roving CNRP we make the following recommendations on 501	

best calibration and use: 502	

1) Collect a series (minimum of 7) of full calibration datasets (!23, !456 , :;, C>=, CD=) 503	

in differing land use and soil types to estimate the instrument specific slope and intercept 504	

for correction factor /,. 505	

2) In the rover sampling area, construct a map of land use including: vegetation/crop type, 506	

planting date, variety, rainfed vs. irrigated, and gravel vs. paved roads vs. natural areas. 507	

3) Collect a series of aggregate soil samples for soil organic carbon and lattice water around 508	

the survey area. The samples should be collected across land use, soil texture, and soil 509	

taxonomic groups. The GSDE or more local datasets like SSURGO in the USA can be 510	

used to select sites, cross validate samples, and fill in missing areas.  511	
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4) Soil bulk density is the critical parameter in the calibration equations and overall 512	

accuracy of the cosmic-ray neutron method. Bulk density should be collected locally 513	

wherever possible. More local datasets like SSURGO in the USA will likely perform 514	

better at smaller scales than the 1 km GSDE. 515	

5) SWC validation datasets should be collected to independently assess the accuracy of the 516	

rover survey results.  517	

 518	
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 685	

Table Captions 686	

Table 1. Summary of mean, standard deviation of in-situ lattice water samples organized by USA 687	

soil taxonomic groups. The table also summarizes a linear regression analysis using the GSDE 688	

clay percent and in-situ sample. The last column indicates how the 1 km CONUS lattice water 689	

map was generated. Note NA stands for not applicable because of a lack of data. 690	

USA Soil 
Taxonomic 

Group 

Mean 
Lattice 
Water 

(Wt. %) 

Std. 
Lattice 
Water 

(Wt. %) 

Number 
of 

Samples 

Linear 
Regression 

Slope 

Linear 
Regression 
Intercept 

Linear 
Regression 

R2     

Linear 
Regression 

p value 

GSDE 
Derived 
CONUS 
Lattice 
Water 

Product 

Alfisol 4.31 1.36 9 6.09 -0.11 0.086 0.44330 Mean 

Andisol NA NA NA NA NA NA NA NA 

Aridisol 2.73 1.36 10 4.82 -0.15 0.095 0.38607 Mean 

Entisol 1.47 0.93 5 2.48 -0.14 0.233 0.41064 Mean 

Gelisol NA NA NA NA NA NA NA NA 

Histosol NA NA NA NA NA NA NA NA 

Inceptisol 4.98 0.28 2 NA NA NA NA Mean 

Mollisol 3.18 1.22 24 1.03 0.11 0.539 0.00004 Linear 

Oxisol NA NA NA NA NA NA NA NA 

Spodosol 2.68 2.10 4 3.45 -0.11 0.020 0.85919 Mean 

Ultisol 2.82 2.33 6 0.28 0.20 0.229 0.33672 Mean 

Vertisol 5.18 NA 1 NA NA NA NA NA 

ALL 3.16 1.58 61 1.68 0.09 0.183 0.00066 NA 
 691	

 692	
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Table 2. Top) Summary of mean difference between in-situ samples and GSDE values (Figure 3) 693	

for bulk density, lattice water and organic carbon. Bottom) Summary of covariance matrix of 694	

difference between in-situ values and GSDE values. The mean difference and covariance data 695	

were used in an error propagation analysis illustrated in Figure 6. 696	

  Bulk Density 
(g/cm3) 

Lattice Water 
(Wt. %) 

Organic Carbon 
(Wt. %) 

Mean Difference of in-situ 
value - GSDE value -0.10035 -0.05789 -0.07077 

Covariance matrix of in-situ value - GSDE value 

  Bulk Density 
(g/cm3) 

Lattice Water 
(Wt. %) 

Organic Carbon 
(Wt. %) 

Bulk Density (g/cm3) 0.0386 -0.0567 -0.2077 
Lattice Water (Wt. %)   1.6745 0.3624 

Organic Carbon (Wt. %)     3.5810 
 697	

 698	

Table 3. Summary of 2014 GrWDRVI and calculated standing wet biomass for irrigated maize 699	

and irrigated soybean fields near Waco, NE. Note that the senescence equation was applied to 700	

DOY 209 for the irrigated maize field as planting date and development can vary locally. The 701	

drop in GrWDRVI between DOY 201 and 209 is a clear indicator of change in plant growth stage 702	

that can be used on a field by field basis. 703	

DOY 
(2014) 

GrWDRVI, 
Irrigated-

Maize 

GrWDRVI- 
Irrigated 
Soybean 

Calculated Standing 
Wet Biomass- 

Irrigated Maize 
(kg/m2) 

Calculated Standing 
Wet Biomass- 

Irrigated Soybean 
(kg/m2) 

153 0.23 0.23 0.00 0.00 
161 0.24 0.24 0.00 0.00 
169 0.32 0.28 0.53 0.06 
177 0.57 0.54 4.69 1.25 
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185 0.55 NA 4.33 NA  
193 0.63 0.63 5.63 1.91 
201 0.61 0.71 5.34 2.48 
209 0.55 0.73 6.50* 2.61 
217 0.57 0.74 6.58 2.67 
225 0.50 0.73 6.27 2.61 
233 0.47 0.74 6.07 NA  
241 0.40 0.68 5.38 2.89 
249 0.43 0.64 5.73 6.77 
257 0.27 0.47 1.44 6.07 
265 0.25 0.44 0.00 5.83 
281 0.21 0.28 0.00 2.02 
289 0.21 0.26 0.00 0.78 
297 0.20 0.25 0.00 0.00 

 704	

 705	

Table 4. Summary of 2014 observed standing wet biomass for irrigated maize and irrigated 706	

soybean fields near Waco, NE. The observations represent the aggregation of 18 plants collected 707	

at 6 different locations across the field on the sampling date.  708	

DOY (2014), 
Irrigated 
Soybean 

Observed Standing 
Wet Biomass- 

Irrigated Soybean 
(kg/m2) 

DOY (2014), 
Irrigated 

Maize 

Observed Standing 
Wet Biomass- 

Irrigated Maize 
(kg/m2) 

167 0.19 161 0.13 
196 1.63 183 2.40 
211 1.81 217 6.22 
259 1.63 259 0.30 

 709	

 710	

 711	

 712	
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Figure Captions 733	

Figure 1. Soil taxonomic classification map over the Continental United States of America using 734	

the twelve USA soil taxonomic orders (data source FAO 2007 and personal communication with 735	

M. Kuzila). Note gelisols are not present in the CONUS. Black dots indicate 61 locations where 736	

we have in-situ composite/average samples for soil bulk density, soil lattice water, soil organic 737	

carbon, and clay weight fraction collected over a 12.6 ha circle and averaged over the top 30 cm 738	

(Table S1).  739	

 740	

Figure 2. Comparison between 61 in-situ composite sample and GSDE value from the closest 741	

pixel for a) clay weight percent b) soil bulk density, and c) soil organic carbon. d) Comparison 742	

between in-situ lattice water and derived values using GSDE clay weight fraction and soil 743	

taxonomic orders. See Table 1 for summary of data by taxonomic group, Table S1 for raw data, 744	

and Table 2 for statistical summary of differences between in-situ and GSDE product. Note error 745	

bars denote +/- 1 standard deviation.      746	

 747	

Figure 3. Derived 1 km resolution lattice water weight percent map using the GSDE clay percent 748	

and regression analyses organized by soil taxonomic classification. See Table 1 for estimates of 749	

the mean, standard deviation, and linear regression vs. clay percent organized by taxonomic 750	

group. Black dots indicate 61 locations where we have in-situ composite/average samples for soil 751	

bulk density, soil lattice water, soil organic carbon, and clay weight fraction collected over a 12.6 752	

ha circle and averaged over the top 30 cm (Table S1). Missing areas indicate surface water 753	

bodies or soil taxonomic groups with no or limited in-situ lattice water sampling (see Table 1). 754	
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 755	

Figure 4. Relationship between GrWDRVI and observed standing weight biomass for maize (a, 756	

c) and soybean (b, d) partitioned into green-up (DOY< 210 for maize, DOY<230 for soybean) 757	

and senescence. Destructive vegetation data is aggregated from 3 fields near Mead, NE between 758	

2003-2013 (Table S2). The regression coefficients and equations are summarized in Table S3. 759	

Note that the maize and soybean functions were subject to the constraints in order to provide 760	

realistic behavior at the observed GrWDRVI and destructive vegetation sampling bounds. See 761	

main text for details. 762	

 763	

Figure 5. Time series of standing wet biomass for two study sites (irrigated maize and irrigated 764	

soybean) near Waco, NE over the 2014 growing season. The graph contains the observed in-situ 765	

sampling in addition to the GrWDRVI estimates using the equations summarized in Table S3. 766	

See Table 3 for GrWDRVI values and Table 4 for in-situ estimates. 767	

 768	

Figure 6. Propagation of error analysis using Monte Carlo simulations of 100,000 soil parameter 769	

datasets of true soil parameters (i.e. soil bulk density, lattice water, soil organic carbon) and 770	

perturbed parameters with matching mean differences and covariance matrix between in-situ 771	

samples and GSDE derived parameters (see Table 2). Three error metrics are presented across a 772	

range of neutron counts (and thus SWC values). Note that soil bulk density was constrained to 773	

1.2-1.5 g/cm3, lattice water was constrained from 1-8 wt. %, soil organic carbon was constrained 774	

from 0-8 wt. %, and soil water content was constrained from 0.03-0.45 cm3/cm3. Simulated and 775	

calculated values outside of these bounds were either reset to the minimum or maximum or 776	
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removed from the Monte Carlo statistics. A minimum threshold of 70% of simulated cases were 777	

used to compute error statistics. 778	
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Figure 1.  Soil taxonomic classification map over the Continental United States of America using the twelve 
USA soil taxonomic orders (data source FAO 2007 and personal communication with M. Kuzila). Note 
gelisols are not present in the CONUS. Black dots indicate 61 locations where we have in-situ
composite/average samples for soil bulk density, soil lattice water, soil organic carbon, and clay weight 
fraction collected over a 12.6 ha circle and averaged over the top 30 cm (Table S1). 
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Figure 2. Comparison between 61 in-situcomposite sample and GSDE value from the closest pixel for a) 
clay weight percent b) soil bulk density, and c) soil organic carbon. d) Comparison between in-situ lattice 
water and derived values using GSDE clay weight fraction and soil taxonomic orders. See Table 1 for 
summary of data by taxonomic group, Table S1 for raw data, and Table 2 for statistical summary of 
differences between in-situ and GSDE product. Note error bars denote +/- 1 standard deviation.     
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Figure 3. Derived 1 km resolution lattice water weight percent map using the GSDE clay percent and 
regression analyses organized by soil taxonomic classification. See Table 1 for estimates of the mean, 
standard deviation, and linear regression vs. clay percent organized by taxonomic group. Black dots indicate 
61 locations where we have in-situcomposite/average samples for soil bulk density, soil lattice water, soil 
organic carbon, and clay weight fraction collected over a 12.6 ha circle and averaged over the top 30 cm 
(Table S1). Missing areas indicate surface water bodies or soil taxonomic groups with no or limited in-situ
lattice water sampling (see Table 1). 40
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Figure 4. Relationship between GrWDRVIand observed standing weight biomass for maize (a, c) and 
soybean (b, d) partitioned into green-up (DOY< 210 for maize, DOY<230 for soybean) and senescence. 
Destructive vegetation data is aggregated from 3 fields near Mead, NE between 2003-2013 (Table S2). The 
regression coefficients and equations are summarized in Table S3. Note that the maize and soybean 
functions were subject to the constraints in order to provide realistic behavior at the observed GrWDRVIand 
destructive vegetation sampling bounds. See main text for details.
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Figure 5. Time series of standing wet biomass for two study sites (irrigated maize and irrigated soybean) 
near Waco, NE over the 2014 growing season. The graph contains the observed in-situsampling in addition 
to the GrWDRVIestimates using the equations summarized in Table S3. See Table 3 for GrWDRVIvalues 
and Table 4 for in-situestimates. 42
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Figure 6. Propagation of error analysis using Monte Carlo simulations of 100,000 soil parameter datasets of 
true soil parameters (i.e. soil bulk density, lattice water, soil organic carbon) and perturbed parameters with 
matching mean differences and covariance matrix between in-situ samples and GSDE derived parameters 
(see Table 2). Three error metrics are presented across a range of neutron counts (and thus SWCvalues). 
Note that soil bulk density was constrained to 1.2-1.5 g/cm3, lattice water was constrained from 1-8 wt. %, 
soil organic carbon was constrained from 0-8 wt. %, and soil water content was constrained from 0.03-0.45 
cm3/cm3. Simulated and calculated values outside of these bounds were either reset to the minimum or 
maximum or removed from the Monte Carlo statistics. A minimum threshold of 70% of simulated cases 
were used to compute error statistics. 43
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